Advanced Air

GENERAL PRODUCT OVERVIEW

Single Duct Terminal Units 3000 Series

Designed for cooling only, cooling with reheat, heating only or heat/cool changeover applications.

- Available in 12 sizes 100 3776 l/s.
- Unit sizes from 4-100 to 16-400 up to 1700 l/s, and size 24 x 16 600x400 up to 3776 l/s. The low profile design is advantageous where ceiling space is restricted.
- High performance inclined opposed blade damper.
- 'Diamond Flow' multi-point averaging sensor on pressure independent models.
- Pressure independent airflow control.
- Electric, analogue electronic or digital control.
- Options include secondary attenuators, hot water coils or electric coils for reheat and various linings for indoor air quality applications.

Series Flow (Constant Volume) Fan Powered Terminal Units 35S Series

- Quiet constant fan operation.
- Available in 2 fan sizes, each with various primary air inlet size options for optimum design flexibility. 140 990 l/s flow range.
- High performance inclined opposed blade primary air damper.
- 'Diamond Flow' multi-point averaging sensor.
- High efficiency motor/fan design.
- Solid state fan speed controller.
- Pressure independent airflow control.
- Electric, analogue electronic or digital control.
- Induced air attenuator option.
- Options include hot water coils or electric coils for supplementary heat and various linings for indoor air quality applications

Super Quiet 'STEALTH' Series Flow (Constant Volume) Fan Powered Terminal Units 35SST 'STEALTH' Series

- Super quiet premium design. Constant fan operation.
- 'STEALTH' design technology.
- Available in 2 fan sizes, each with various primary air inlet size options for optimum design flexibility. 140 – 990 l/s flow range.
- High performance inclined opposed blade primary air damper.
- 'Diamond Flow' multi-point averaging sensor.
- Custom high efficiency motor/fan design.
- Solid state fan speed controller.
- Pressure independent airflow control.
- Electric, analogue electronic or digital control.
- Options include hot water coils or electric coils for supplementary heat and various linings for indoor air quality applications.

'Diamond Flow' Sensor

The Nailor 'Diamond Flow' is a multi-point airflow sensor that is designed to provide an averaged and very accurate flow signal for use with pressure independent controls.

The 'Diamond Flow' is constructed of aluminum (stainless steel is optional) to ensure longevity and strength and is therefore not affected by adverse ambient temperature fluctuations before or after installation. It has a minimum of four pick-up points on each side which sample airflow in each quadrant of the inlet and then averages those readings. The 'Diamond Flow' has a maximum error envelope of only \pm 5%. Therefore, flow measurement is always accurate within the tolerances of normal measuring methods.

The second advantage of the 'Diamond Flow' is that it amplifies the velocity pressure signal (Δp) sent to the controller by an average factor of about 2.5. Inside pneumatic reset controllers, the static pressure signal is subtracted from the total pressure signal by piping these pressures to opposite sides of a diaphragm. The combined diaphragm and spring assembly have a mass

equivalent to about 7.5 Pa. This mass defines the dead band and the minimum Δp setting. By amplifying the velocity signal, the controller is 'tricked' into a lower minimum capability and a narrower dead band. The same advantage is realised with digital and analogue electronic controls utilising a flow sensor and transducer. Low flow sensitivity is increased and lower settings can be held.

Thirdly, the aerodynamic aluminum sensor design causes minimal disturbance to the airstream. Therefore, compared with other bulkier sensor designs, it produces only a minimal pressure drop increase across the terminal unit damper, reducing inlet static pressure requirement and increasing energy efficiency, while at the same time producing negligible sensor generated noise.

Opposed Blade Damper

All Nailor single duct and fan powered terminals are equipped with inclined opposed blade dampers that provide premium performance and control accuracy. Blades shut-off at 45° in the direction of airflow. This ensures quiet operation with near linear performance for primary air control. Airflow disturbance and hence the turbulence created over a throttling opposed blade damper is less than that produced when compared with a similarly throttling round 'butterfly' type damper design, therefore generating less noise.

Controlled throttling of the airflow is achieved throughout the complete damper rotation from fully open to fully closed, desirable characteristics not found in round 'butterfly' dampers, thereby providing accurate control under all conditions. Opposed blade dampers ensure a smooth response as airflow is adjusted in response to changing thermostat demand or the damper adjusts to compensate for varying static pressure conditions.

All Nailor dampers feature a solid plated steel 13mm dia. driveshaft with an indicator mark on the end of the shaft to show damper position.

Electric Re-Heat/Supplementary Heater Batteries

All terminal units are available with factory installed electric re-heat/supplementary heater batteries.

Casing: Manufactured from 18 swg. (1.2mm thick) folded galvanised mild steel sheet, formed into a rectangular casing, all casing joints are mechanically sealed.

Intake and discharges incorporate rectangular flanges, which are mechanically fixed to the main body of the casing.

Electric Elements: Manufactured from stainless steel tubing with copper resistance wire and magnesium oxide insulation.

High Temperature Cut-Out: All electric re-heat or supplementary heater batteries incorporate automatic and manual high temperature cut-out safety devices, which disconnect the electrical power in the event that the air temperature exceeds a pre set maximum.

Pressure Switch: All electric re-heat or supplementary heater batteries incorporate a positive pressure switch

which does not allow the heating elements to be energised unless there is positive air pressure (indicating airflow) available.

Low Pressure Hot Water Re-Heat/Supplementary Heater Batteries

All terminal Units are available with factory installed low pressure hot water re-heat/supplementary heater batteries.

Casing: Manufactured from 18 swg. (1.2mm thick) folded galvanised mild steel sheet, formed into a rectangular casing, all casing joints are mechanically sealed.

Inlets and outlets incorporate rectangular flanges, which are mechanically fixed to the main body of the casing.

Water Tubes: Manufactured from 10mm diam. copper tube to BS 1278 table Y.

Pipe Connections: Plain male ends suitable for solder jointing or threaded.

Heat Exchange Fins: Manufactured from 0.13mm thick rectangular aluminium plates, being mechanically bonded to the copper tubes. Fins are spaced at 2.5mm intervals.

All low pressure hot water re-heat/supplementary heater batteries incorporate an air vent and drain point.

Pressure Testing: All low pressure hot water re-heat/supplementary heater batteries are air pressure tested under water to a pressure of 3,000 kPa.

Analogue Electronic Controls

A comprehensive range of control options are available for all terminal types and pressure independent application sequences. Featuring 'Diamond Flow' multi-point sensor for accurate feedback control.

Direct Digital Controls (DDC).

Nailor has a wealth of experience supplying terminal units for use with state-of-the-art digital controls. We have worked with all major controls companies in recent years and have developed standard factory mounting programs to ensure operational efficiency is maximised for all terminal types and applications.

Nailor has designed its VAV terminal units to be generic in nature and compatible with all DDC controllers.

Analogue Electronic Components

Control Features:

- Proportional plus integral control function provides precise flow and temperature control.
- Stand alone operation.
- Simple installation and balancing.
- Reliable operation and excellent repeatability
 - (settings do not drift with time)
- Less costly than digital controls with no programming requirement.
- Suitable for all types and sizes of building applications.
- Flexibility built-in to handle all control applications

Nailor is pleased to make available a new and improved range of pressure independent analogue electronic controls for terminal units. These controls now incorporate the 'Diamond Flow' multi-point averaging sensor for accurate flow measurement as standard, a re-designed higher torque controller/ actuator and new room thermostat design

Controller/Actuator

This device is mounted externally on the side of the terminal casing by means of a clamping mechanism directly onto the primary air damper operating shaft and a purpose made anti rotation bracket.

These units incorporate a dynamic differential pressure sensor and a microprocessor based electronic measuring device, coupled to type NM 8 Nm. damper motor all contained within a common housing.

The relationship between

differential pressure and the output voltage signal is internally linearised within the microprocessor to provide a linear relationship to air volume

'Diamond Flow' Sensor

All components are matched and calibrated to provide regulated airflow in response to the electronic room thermostat, which is furnished as an integral part of the control package. Minimum and maximum airflow settings are adjusted at the thermostat, using a small screwdriver and digital voltmeter. Voltage settings correspond to airflow volumes on the Nailor calibration chart supplied with each project. It is not necessary to enter the ceiling space and locate the terminal itself for field calibration thereby reducing time and disruption.

Analogue Electronic (continued

Temperature Sensor/Controller

This electronic temperature controller is purpose made to provide an analogue interface for the Belimo NMV-D2-ANI Compact Variable Air Volume Controller. It is a modulating temperature controller with 0-10 Vdc fully modulating outputs for heating and cooling

Direct Digital Controls (DDC)

Microprocessor based technology is now commonplace in HVAC building management systems, particularly in larger building applications. Most controls companies have therefore developed DDC controllers and software programs for terminal units, to enhance energy efficient VAV systems and the well proven associated control strategies. VAV digital controllers are only one part of a much larger fully integrated building management system and the common availability and specification of terminal unit DDC controllers from control companies ensures compatibility and common protocol for trouble-free systems communication, maintenance support and trouble shooting. Digital VAV controls offer all the advantages of accurate, pressure independent operation plus the additional benefits of a networking capability and two-way communication. Parameters can be loaded and downloaded via communication with a remote PC.

Nailor has extensive experience factory mounting digital controls supplied by the controls contractor. Nailor has developed

controls supplied by the controls contractor. Nailor has developed individual factory mounting programs for most manufacturers currently offering digital controls, providing the assurance of a high quality, professional installation and minimising start-up problems.

Nailor has designed its VAV terminal units to be generic in nature and compatible with all DDC controllers.

- Nailor supplies as standard an IP21 full controls enclosure for protection of the controls during shipment, installation and for the life of the building HVAC system. Dust tight construction is an option.
- The vast majority of digital controls require a flow sensor. Nailor's 'Diamond Flow' multi-point averaging sensor is compatible with all such controls. Nailor will mount its own sensor as standard, whether the digital controls are to be factory or field mounted, ensuring accurate measurement regardless of inlet conditions. K Factors have been developed for loading into the flow control algorithm.
- Separate isolation control transformers are available on fan terminal units to protect digital components from potentially harmful voltage spikes.

Advanced Air

SINGLE DUCT

Contents

	Page No.
Single Duct Variable or Constant Volume Terminals	-
3000 Series	S 1
Model 3001 - Cooling or Heating Only	
Model 30RW - Cooling with Hot Water Re-heat	
Model 30RE - Cooling with Electric Re-heat	
Performance Data	
Recommended Airflow Ranges	S 2
Dimensions	S 3
Discharge Sound Power Levels	S 4
Radiated Sound Power Levels	S 5
Secondary Attenuators	S 6
Hot Water Re-Heat Batteries	S 9
Electric Re-Heat Batteries	S 11
Multiple Outlet Plenums	S 13
Standard Control Sequences	S 14
1 EL - Cooling Only	
2 EL - Heating Only	
3 EL - Cooling/Heating with Auto - Changeover	
4 EL - Cooling with morning warm up	
5 EL - Cooling with Electric Re-Heat plus Minimum Air Volume	
6 EL - Cooling with Electric Re-Heat plus Morning Warm-up	
7 EL - Cooling with On/Off Hot Water Re-Heat	
8 EL - Cooling with Proportional Hot Water Re-Heat	
9 EL - Cooling with Time Proportional Hot Water Re-Heat	
10 EL - Constant Volume Operation	
Suggested Specifications	S 16

Copyright© 2001 by Advanced Air (UK) Ltd. All rights reserved. The information contained in this publication is correct at the time of printing. Continuous product development means that from time to time product specifications and other information will change. The company reserve the right to modify or withdraw any of the products described without prior notice.

Single Duct Variable or Constant Air Volume 3000 Series

Models:

- 3001 Cooling or Heating only
- 30RW Cooling with Hot Water Re-heat
- **30RE** Cooling with Electric Re-heat

Variable Air Volume Systems supply constant temperature air to an area while the volume of air varies as opposed to a conventional HVAC system which has constant volume and varies the air temperature.

Operating costs are greatly reduced compared to the larger conventional HVAC systems by using less fan energy and less refrigeration energy.

Variable Air Volume Systems also cut initial costs since the system capacity is determined from the peak demands of specific zones in lieu of peak demands for the entire building.

The smaller components of a VAV system require less floor space and give the owner the flexibility to adapt to tenant changes as desired at any time during or after construction of the building.

With today's energy conservation needs, **3000 Series** air terminals are designed for and adaptable to any modern VAV requirements.

The latest in control components and options provides maximum flexibility with a wide scope for cost effective innovation.

FEATURES:

• Inclined opposed blade primary air damper is inherently more linear in its flow characteristics than the standard butterfly type damper. More accurate flow control is ensured, which reduces hysteresis for more stable control of the temperature in the zone.

• Available in 12 unit sizes to handle from 100 – 3776 l/s.

• Compact low profile design to accommodate tight ceiling spaces.

• Gauge taps provided for field calibration and balancing.

• The unique blade and jamb seals provide tight closure capabilities while minimising sound generation.

Unit Size	Height mm
4-100 to 6-150	200
6.5-160 to 10-250	300
2-315 to 16-400	450
4 x 16 - 600 x 400	450

• 18 swg (1.2mm thick) zinc coated steel casing, mechanically sealed, low leakage construction.

• 18 swg (1.2mm thick) corrosionresistant steel inclined opposed blade damper with seals. 45° rotation. 13mm dia. plated steel drive shaft. An indicator mark on the end of the shaft shows damper position. Tight closeoff. Damper leakage is less than 2% of nominal flow rate at 750 Pa.

• Rectangular discharge with flanged duct connection.

• Acoustic/thermal lining: the terminal is internally lined with a 25mm thick acoustic/thermally insulating foam which is Melamine based, open cellular construction, having a non woven black tissue facing and complying with class O fire rating. The material is adhered to all internal surfaces and inside box/channel sections. • Special Indoor Air Quality linings are available.

• Right-hand controls location is standard (shown) when looking in direction of airflow. Damper is clockwise to close. Optional left hand controls mounting is available, when damper is counter clockwise to close.

ow-Leakage (Casin	g
--------------	-------	---

Terminal	Max. Le	eakage, I/s			
Size	250 Pa	500 Pa			
4-100	<4.0	5.5			
5-125	<4.0	5.5			
5.5-140	<4.0	5.5			
6-150	<4.0	5.5			
6.5-160	<4.0	5.5			
7-180	<4.0	7.0			
8-200	<4.0	7.0			
10-250	<4.0	7.0			
12-315	4.0	7.6			
14-355	4.5	8.0			
16-400	4.5	8.1			
24 x 16					
600 x 400	4.5	8.1			

Recommended Airflow Ranges for Single Duct VAV Terminal Units

Ai

The recommended airflow ranges below are for terminal units with pressure independent controls and are based upon controller sensitivity limits as shown for each control type. For a given unit size, the minimum, auxiliary minimum (where applicable) and the maximum flow settings must be within the range limits to ensure pressure independent operation, accuracy and repeatability. For these reasons, factory settings will not be made outside these ranges. A minimum setting of zero (shut-off) is also available. Where an auxiliary setting is specified, the value must be greater than the minimum setting. When digital or other controls are mounted by Nailor, but supplied by others, these values are guidelines only, based upon experience with the majority of controls currently available. Controls supplied by others for factory mounting are configured and calibrated in the field.

ir Volume Range	Unit Size	Inlet Spigot dia mm	Min I/s	Max I/s
	4	100	30	100
	5	125	40	150
	5.5	140	50	200
	6	150	55	235
	6.5	160	60	275
	7	180	75	365
	8	200	90	470
	10	250	150	670
	12	315	240	1035
	14	355	300	1275
	16	400	350	1700
	24x16	600 x 400	400	3775

Basic Unit with Controls - Dimensions Model 3001 Sizes 4-100 to 16-400

Basic Unit with Controller - Dimensions - Model 3001 Size 24 x 16 - 620 x 400

Model 3001 Terminal Dimensions

Terminal	0	Α	В	D	Ε	F	G	K	L	W	Н	X	Y	Wgt
Size	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
4-100	96	360	300	100	430	450	150	40	600	300	200	360	260	9.5
5-125	121	360	300	100	430	450	150	40	600	300	200	360	260	9.5
5.5-140	136	360	300	100	430	450	150	40	600	300	200	360	260	9.5
6-150	146	360	300	100	430	450	150	40	600	300	200	360	260	9.5
6.5-160	156	360	300	100	430	450	150	40	600	300	300	360	360	9.5
7-180	176	360	300	100	430	450	150	40	600	300	300	360	360	9.5
8-200	196	360	300	100	430	450	150	40	600	300	300	360	360	12.5
10-250	246	410	350	100	480	450	150	40	600	350	300	410	360	16.5
12-315	311	510	450	100	580	450	150	40	600	450	450	510	510	20.0
14-355	351	510	450	100	580	450	150	40	600	450	450	510	510	20.0
16-400	396	510	450	100	580	450	150	40	600	450	450	510	510	20.0
24x16-														
600x400	596x39	6 770	710	100	840	450	150	40	600	710	450	770	510	30.0

Acoustic Data • Discharge Sound Power Levels

Model 3001, Basic Unit

Terminal	Air	Min.		l l	an and100% Primary A	ir- Sound Power Octa	ve Bands @ Inlet Pres	sure Shown
Size	Flow	inlet	Min. ∧Ps OBCF -Hz.	125 Pa. APs OBCF -Ha	250Pa ∧Ps OBCF -Hz.	375Pa ∧Ps OBCF -Hz.	500Pa ∆Ps OBCF -Hz.	750Pa ∆Ps OBCF -Hz.
0.20	l/s	∆Ps Pa	125 250 500 1k 2k 4k	125 250 500 1k 2k 4k	125 250 500 1k 2k 4k			
		27	* 46 52 57 48 43	52 56 58 57 49 44	58 50 62 59 53 49	59 62 63 61 56 53	60 63 65 63 58 55	59 64 68 67 62 58
	71	15	* 41 46 49 39 35	51 52 54 50 44 38	55 56 57 55 50 47	57 59 60 58 54 51	56 59 63 62 56 53	55 59 66 70 63 58
4-100	47	7	* * 37 37 27 *	47 47 47 46 41 35	49 51 55 53 47 43	49 52 60 60 53 48	48 52 62 65 58 53	16 50 61 68 66 60
4100	35	2	* * 31 28 * *	* 45 45 43 37 31	* 46 56 56 49 42	* 46 58 62 56 49	* 45 58 64 62 55	* 45 58 65 66 62
	24	2	* * * * * *	* 13 19 18 10 31	* 42 56 60 55 46	* 11 57 63 60 53	* 10 55 58 60 55	* 40 55 59 58 56
	1/2	10	18 55 53 57 10 17	55 50 60 50 51 48	47 63 63 61 53 50	60 64 65 64 56 53	62 67 67 65 50 56	40 50 50 50 50 62 60 60 67 62 50
	118	7	* 16 18 51 12 10	53 57 56 55 46 42	56 61 60 58 51 48	64 63 62 61 54 51	64 64 63 61 56 53	50 66 66 65 60 57
5-125	0/	5	* 11 13 11 31 32	51 53 52 50 42 37	54 57 56 54 47 44	56 60 50 57 51 <i>1</i> 0	56 62 61 60 54 52	57 63 65 55 50 56
J-12J	50	2	* * 22 20 * *	* 16 15 13 36 31	10 53 52 50 13 10	10 54 58 57 51 46	10 54 60 63 56 51	<i>A</i> 7 52 61 68 64 50
	17	2	* * 20.25 * *	* 45 42 40 22 20	* 51 54 52 46 40	* 51 59 60 52 47	* 51 50 65 50 52	* 47 59 67 66 60
	4/	2	29 20	40 42 40 00 00	51 54 52 40 40	51 30 00 33 47		47 30 07 00 00
	212	47	49 51 52 59 46 45			04 03 07 07 30 34 C2 CE CC CC E7 E4	67 70 72 73 64 60 CE CZ CR CR EQ EQ	
0.450	189	17	47 48 48 54 44 40		01 02 03 02 02 00	03 00 00 00 07 04		67 70 70 70 62 60
6-150	142	10	* 42 40 46 35 31	50 55 53 53 44 35	59 59 59 58 50 47	61 62 61 61 53 51	62 64 63 63 55 53	63 66 67 66 59 57
	94	5	29 32	50 48 47 46 38 34	55 54 53 52 45 43	56 57 57 55 49 48	56 58 59 58 52 50	56 59 63 66 58 56
	4/	2		* 43 41 39 33 31	* 47 53 52 55 43	* 48 56 59 52 48	* 48 58 64 58 53	* 48 58 68 65 60
	307	2	52 55 62 59 51 48	56 58 61 59 52 48	60 61 64 62 57 54	65 65 68 66 61 59	68 68 70 68 63 61	70 70 71 69 65 63
	260	2	50 51 56 53 46 42	54 55 56 54 49 44	60 59 62 60 55 52	65 64 66 64 60 57	66 67 68 66 62 59	68 70 72 69 66 63
7-180	158	2	46 39 41 38 29 22	52 50 52 50 45 41	57 57 57 56 52 49	58 60 61 59 55 53	59 62 64 61 58 56	60 63 67 65 62 59
	106	2	* * 30 26 * *	49 46 47 45 41 36	53 54 55 52 48 46	53 56 58 56 52 50	58 56 60 59 55 54	54 57 59 61 59 59
	52	2	* * * * * *	* 41 41 38 34 30	* 47 47 46 45 43	* 48 51 49 49 47	* 48 52 52 51 51	* 48 54 55 55 56
	378	7	52 53 59 58 51 44	57 60 62 60 52 47	61 63 64 63 57 53	65 65 66 65 60 56	66 66 68 67 62 59	69 70 71 70 66 63
	330	5	51 51 56 56 48 40	55 58 59 57 50 45	59 61 62 61 55 52	63 63 65 64 59 56	65 65 66 66 61 59	67 69 70 69 65 62
8-200	283	5	49 48 51 50 42 32	55 57 57 56 49 47	59 60 61 60 54 51	62 63 64 63 58 55	64 65 66 65 60 57	66 68 69 68 63 61
	189	2	* 38 40 38 29 *	51 50 51 49 42 40	56 56 56 54 50 47	59 60 59 58 54 52	60 62 62 60 56 55	60 64 66 65 60 58
	83	2	* * * * * *	* 44 42 40 37 34	* 50 50 48 44 40	48 52 54 53 49 47	48 51 56 64 52 52	48 51 57 58 57 57
	637	2	51 53 59 59 54 51	62 63 64 64 58 54	65 67 68 67 61 57	67 69 70 70 64 60	74 71 72 72 67 63	71 75 75 75 71 67
	519	2	48 47 52 52 47 43	59 61 60 59 54 49	62 64 64 64 58 54	66 67 67 67 62 58	68 70 69 70 65 61	69 73 72 73 69 66
10-250	•389	2	* 41 45 44 38 33	55 57 55 54 49 43	61 61 61 60 55 52	64 65 64 64 59 56	65 68 66 66 62 59	66 69 70 69 67 63
	260	2	* * 31 28 * *	53 51 50 47 44 40	57 58 56 56 52 49	59 61 60 60 56 55	60 62 62 62 59 56	59 62 65 66 62 60
	130	2	* * * * * *	* 45 43 42 38 34	47 49 50 50 58 44	47 49 52 52 54 51	47 48 53 55 57 56	48 49 55 58 60 60
	944	2	57 57 62 61 56 53	64 65 66 66 60 55	67 68 69 70 64 59	69 70 72 72 66 61	71 71 73 74 68 63	74 75 76 78 73 69
	755	2	52 49 54 53 48 44	61 61 61 61 55 49	65 65 65 65 59 54	68 68 69 69 64 59	69 70 70 72 66 62	71 73 74 74 70 67
12-315	566	2	47 43 46 44 38 34	57 57 56 55 49 44	62 62 62 62 56 52	65 65 65 66 60 57	66 68 67 68 63 60	69 71 72 71 68 64
	378	2	44 36 36 33 28 *	54 53 52 51 45 40	60 59 58 58 53 50	62 63 62 62 58 54	63 64 65 64 61 57	63 66 68 68 65 62
	189	2	* * * * * *	48 47 46 44 39 36	51 51 52 52 49 45	51 52 55 56 55 52	51 51 56 59 59 58	51 51 57 60 63 64
	1274	2	60 59 66 64 60 54	66 66 69 69 63 57	70 68 71 70 65 59	72 71 73 72 73 65	74 72 74 74 69 67	77 76 77 77 73 70
	991	2	54 55 58 55 51 44	63 61 62 62 56 50	67 65 66 65 60 59	70 68 68 68 63 63	71 70 70 70 65 64	74 73 74 73 70 68
14-355	543	2	48 43 48 46 41 33	58 55 55 54 49 43	63 61 61 60 55 55	66 64 64 63 60 59	68 67 67 66 63 61	69 69 71 69 66 64
	496	2	* 35 36 32 27 *	53 51 50 48 44 40	59 57 56 56 53 51	60 60 60 59 56 54	62 62 63 62 59 57	63 64 66 66 63 61
	248	2	* * * * * *	49 45 44 43 40 37	52 50 51 50 48 45	51 50 54 54 53 51	54 53 56 57 56 55	54 54 58 60 60 60
	1652	2	60 59 66 64 60 54	65 65 70 70 64 58	71 69 72 72 66 59	73 72 73 74 68 64	74 73 75 75 70 66	77 76 77 78 73 70
	1322	2	56 54 56 58 54 48	64 62 64 65 58 53	67 66 67 66 61 56	70 69 70 69 64 61	72 71 72 71 67 63	76 75 75 75 71 68
16-400	991	2	50 46 51 49 44 38	59 57 58 57 51 46	64 63 62 62 57 54	68 67 66 66 61 59	70 68 68 68 60 58	72 71 72 72 69 66
	661	2	* 37 39 35 30 *	54 57 51 50 45 42	60 59 57 57 53 51	63 62 61 61 58 56	64 65 65 64 61 59	66 67 69 68 65 63
	330	2	* * 25 23 * *	50 46 45 45 42 42	53 52 53 52 50 48	54 54 56 56 55 54	56 56 59 59 58 58	58 57 62 63 62 62
	3776	154	75 72 72 67 66 62	81 78 76 71 70 66	84 81 80 76 75 71	86 82 82 78 77 73	88 85 84 81 80 76	90 87 87 84 83 78
24x16	3304	117	72 69 71 65 64 60	80 77 75 71 69 65	83 80 79 76 74 70	84 82 81 78 76 72	86 84 84 81 79 74	88 86 86 84 82 77
600x400	2832	87	69 68 67 62 61 56	78 75 74 70 68 64	81 79 78 75 73 69	82 81 79 77 75 71	84 83 82 80 78 73	86 85 85 83 81 76
	2360	60	67 64 62 57 56 51	76 74 73 69 66 63	79 77 77 74 71 67	80 79 78 76 73 69	82 81 81 79 76 72	84 83 84 82 79 75
	1888	37	65 59 58 51 50 45	73 72 71 67 65 61	77 76 76 72 70 65	78 78 78 74 72 67	80 79 80 77 75 70	82 81 82 80 78 73

Acoustic Data • Radiated Sound Power Levels

Model 3001, Basic Unit

Terminal	Air	Min.		F	an and100% Primary Ai	r- Sound Power Octa	ve Bands @ Inlet Press	ure Shown
Size	Flow	inlet	Min. ∧Ps OBCF -Hz.	125 Pa. ∧Ps OBCF -Hz	250Pa ∧Ps OBCF -Hz.	375Pa ∧Ps OBCF -Hz.	500Pa ∆Ps OBCF -Hz.	750Pa ∆Ps OBCF -Hz.
0.20	l/s	∆Ps Pa	125 250 500 1k 2k 4k	125 250 500 1k 2k 4k	125 250 500 1k 2k 4k	125 250 500 1k 2k 4k	125 250 500 1k 2k 4k	125 250 500 1k 2k 4k
	94	27	* 36 33 32 * *	* 39 37 38 29 29	49 46 43 37 30 29	53 52 47 40 32 31	53 53 50 42 33 33	54 55 53 47 37 37
	71	15	* 35 29 31 * *	* 40 36 30 25 23	47 46 40 34 28 26	49 50 47 39 31 30	47 48 48 43 34 32	48 48 48 50 40 37
4-100	17	7	* * * * * *	* 37 32 27 * *	* 13 12 31 27 23	* 11 15 11 32 20	* 13 16 16 36 32	* 12 11 51 13 38
-100	35	2	* * * * * *	* 37 31 26 * *	* 11 13 37 29 21	* 12 15 12 22	19 38 42 45 40 33	* 36 /1 /8 // /0
	24	2	* * * * * *	* 27 20 20 * *	* 26 41 40 22 27	* 25 10 12 20 21	* 24 20 40 20 22	* 22 26 27 25 27
	140	10	47 20 22 22 20 27	57 50 50	50 41 40 52 21	57 40 47 20 20 22	54 50 40 50 55	52 50 57 55 57
	142	10	47 30 32 32 30 27	50 45 57 57 55 51	54 40 44 57 55 51	57 49 47 59 50 55	59 52 49 40 59 55	59 55 55 45 45 59
E 40E	04	5	35 31 25 23	50 39 30 29 20 25	54 45 42 55 52 20	50 46 40 50 50 50	50 51 40 57 57 52	57 55 51 42 41 55
5-125	94	5		50 38 34 27 26	52 43 39 30 30 25	52 45 43 32 32 28 40 40 40 64 60 67	53 48 46 36 36 30	0 40 44 41 34
	59	2		43 29 21	48 40 38 28 27	48 42 42 34 33 27	49 42 44 39 38 29	49 42 44 47 46 37
	4/	2	* * * * * *	* 33 29 * * *	* 39 38 28 26 *	* 40 42 36 34 26	46 40 43 43 41 31	4/ 41 43 4/ 46 3/
	212	22	48 44 37 35 30 28	48 47 40 38 32 29	56 50 45 40 34 31	59 53 48 44 36 33	61 55 50 43 39 37	64 58 54 46 42 41
	189	17	* 42 33 33 28 26	49 46 39 35 30 28	56 49 44 38 32 29	59 52 47 40 36 33	62 54 49 42 39 36	65 58 54 45 42 41
6-150	142	10	* 34 27 26 * *	47 42 35 29 25 *	55 46 40 33 30 28	58 49 44 36 33 32	59 51 47 38 36 34	60 55 51 43 39 39
	94	5	* * * * * *	47 36 30 24 * *	53 43 38 30 29 28	53 45 43 32 31 30	53 47 44 36 32 32	55 49 46 43 37 37
	47	2	* * * * * *	* 34 27 * * *	* 35 38 33 29 24	45 39 40 37 31 28	47 39 40 42 37 32	46 40 40 46 44 38
	307	2	48 45 46 38 31 30	49 48 45 37 31 29	54 50 47 40 34 32	60 54 50 44 37 35	64 58 54 48 40 38	67 63 58 51 44 43
	260	2	49 43 41 33 27 25	48 44 40 32 28 26	55 49 45 38 32 30	61 54 49 43 36 33	64 58 52 45 38 36	65 61 57 50 42 40
7-180	158	2	* * 28 33 * *	* 40 35 29 24 *	58 48 42 36 30 28	57 51 46 40 32 30	57 52 48 42 34 32	57 53 50 47 39 38
	106	2	* * * * * *	* 39 33 28 * *	50 45 40 34 28 25	52 47 43 38 31 29	51 47 43 41 33 31	52 48 45 42 35 36
	52	2	* * * * * *	* * 28 25 * *	* 37 33 32 27 24	* 36 32 31 27 26	* 38 35 34 29 29	* 38 35 35 32 36
	378	7	51 46 40 33 31 28	55 48 44 35 33 29	57 51 48 38 36 32	61 54 50 41 40 35	64 56 53 43 43 38	66 58 55 46 47 41
	330	5	50 43 37 31 29 25	51 47 42 33 31 28	57 51 47 37 36 32	61 53 50 40 39 35	63 55 51 42 41 37	64 59 56 45 44 40
8-200	283	5	* 39 33 29 26 *	50 45 40 31 30 26	57 49 45 35 34 31	60 53 49 38 38 33	61 55 51 40 40 36	63 59 56 46 43 40
	189	2	* 35 26 * * *	49 41 36 28 27 24	54 47 41 32 31 30	57 52 46 35 34 32	57 52 47 37 36 34	59 54 51 41 40 39
	83	2	* * * * * *	* 36 31 23 23 *	48 41 35 29 29 27	48 42 37 31 31 30	49 42 39 33 33 33	49 42 40 35 37 38
	637	2	53 42 41 36 30 23	55 47 46 39 34 29	58 53 50 44 38 34	60 56 53 48 42 37	63 57 54 50 46 41	65 61 57 54 48 45
	519	2	51 37 35 30 25 *	53 46 42 35 31 27	55 50 47 41 35 31	60 54 50 45 39 36	61 66 51 47 42 39	64 61 55 51 45 43
10-250	389	2	* 33 29 25 * *	50 43 38 32 29 25	55 48 43 38 33 30	58 52 47 42 37 34	59 54 49 44 38 36	61 57 53 49 43 40
	260	2	* * * * * *	* 38 33 29 25 *	51 44 38 34 30 28	53 47 42 38 32 34	56 50 45 41 36 33	57 52 48 45 39 37
	130	2	* * * * * *	* 35 29 26 * *	* 39 33 31 28 *	* 40 36 34 31 29	* 40 36 36 33 32	48 43 40 40 36 36
	944	2	54 50 49 44 37 33	58 55 51 46 39 35	61 59 53 49 43 37	64 61 56 52 45 41	65 62 58 55 48 44	68 66 61 58 51 49
	755	2	52 45 41 36 30 27	56 52 45 40 34 30	59 56 49 46 38 35	61 58 53 49 42 39	62 60 55 51 44 42	65 64 58 55 48 46
12-315	566	2	47 39 33 29 24 *	52 48 40 36 30 27	55 52 45 41 34 32	58 55 49 45 38 36	60 58 51 48 41 39	61 61 55 52 45 44
12 010	378	2	* * * * * * *	50 41 34 30 26 *	52 48 41 37 31 30	53 52 45 42 35 33	54 53 47 44 37 36	56 55 50 48 42 42
	189	2	* * * * * *	* 37 31 28 * *	* 42 36 33 29 28	47 45 40 37 32 31	48 47 42 40 35 34	
	1274	2	57 54 50 46 42 36	59 57 52 48 44 38	61 60 54 49 46 38	64 63 56 51 49 45	65 66 59 53 50 48	69 69 63 57 53 51
	991	2	54 48 44 39 35 30	56 53 45 40 37 31	61 57 50 44 41 38	63 61 55 48 44 43	64 63 57 50 46 44	66 66 60 55 50 48
14-355	5/3	2	16 10 35 30 28 *	51 48 40 33 31 27	57 55 48 40 36 35	60 58 52 45 40 30	60 60 53 47 43 41	62 62 57 52 47 45
14-333	106	2	* 22 24 * * *	10 16 38 31 28 24	52 51 43 37 33 31	54 55 47 41 37 35	55 58 50 45 40 38	56 59 52 49 42 42
	240	2	52 2 4 * * * * * * *	* 20 21 27 24 *	* 45 20 22 20 20	* 15 20 25 21 22	10 10 10 40 10 00	10 10 11 12 10 12
	1652	2	57 57 52 40 42 26	59 51 27 24	43 30 32 30 20	40 09 00 01 02	40 40 42 39 37 30	49 49 44 42 40 42
	1002	2	57 57 55 49 45 50	59 60 55 50 45 50	63 62 57 52 40 57	00 00 09 09 04 40 40 CE C2 E7 E0 44 20		/ 1 / 1 04 09 03 48 C0 C0 C2 EC EO 40
40.400	1322	2	04 01 49 43 37 32	59 55 50 44 38 32	62 59 53 47 41 35	00 03 07 00 44 39 01 00 50 45 40 05		68 69 62 56 50 46
16-400	991	2	49 44 41 34 28 "	54 50 44 37 32 28	59 57 50 42 37 32	61 60 53 45 40 35	63 63 56 49 43 39	64 65 58 53 47 44
	661	2	* 34 31 * * *	50 47 39 32 29 26	54 53 46 38 35 31	50 57 49 42 38 35	57 59 51 45 40 38	58 61 54 49 44 42
	330	2	74 07 00 04 70 75	40 33 28 25 *	4/ 4/ 39 33 32 29	49 49 42 37 35 33	60 51 44 39 37 36	51 53 46 43 41 41
	3776	154	/1 67 66 61 58 53	73 70 68 62 60 55	// 74 72 67 63 58	79 76 75 70 65 60	81 77 77 72 67 61	83 80 80 75 69 63
24x16	3304	117	67 64 65 59 57 53	71 68 66 60 58 53	75 72 71 65 62 56	77 74 73 68 64 58	79 76 75 70 65 59	81 78 78 73 68 61
600x400	2832	87	64 60 61 55 53 51	69 66 64 58 56 51	72 70 69 63 60 54	74 72 71 66 62 56	76 73 73 69 63 57	78 76 76 72 66 59
	2360	60	62 56 56 51 51 46	66 63 62 56 53 48	69 67 67 61 57 52	71 69 69 64 59 54	73 71 71 67 61 55	75 73 74 70 63 57
	1888	37	61 52 50 46 43 40	62 60 60 54 50 45	66 64 64 59 54 49	68 66 67 62 56 51	69 68 69 64 58 52	72 70 71 67 60 54

Secondary Attenuators Dimensions Models 30FB and 30FG Series

Terminal	W	Н	X	Y	L	Wgt
Size	mm	mm	mm	mm	mm	kg
4-100	300	200	330	230	600	12.00
4-100	300	200	330	230	900	16.00
4-100	300	200	330	230	1200	12.00
5-125	300	200	330	230	600	12.00
5-125	300	200	330	230	900	16.00
5-125	300	200	330	230	1200	20.00
5.5-140	300	200	330	230	600	12.00
5.5-140	300	200	330	230	900	16.00
5.5-140	300	200	330	230	1200	20.00
6-150	300	200	330	230	600	12.00
6-150	300	200	330	230	900	16.00
6-150	300	200	330	230	1200	20.00
6.5-160	300	200	330	330	600	15.00
6.5-160	300	300	330	330	900	19.00
6.5-160	300	300	330	330	1200	24.00
7-180	300	300	330	330	600	15.00
7-180	300	300	330	330	900	19.00
7=180	300	300	330	330	1200	24.00
8-200	300	300	330	330	600	15.00
8-200	300	300	330	330	900	19.00
8-200	300	300	330	330	1200	24.00
10-250	350	300	380	330	600	16.00
10-250	350	300	380	330	900	21.00
10-250	350	300	380	330	1200	26.00
12-315	450	450	480	480	600	24.00
12-315	450	450	480	480	900	31.00
12-315	450	450	480	480	1200	38.00
14-355	450	450	480	480	600	24.00
14-355	450	450	480	480	900	31.00
14-355	450	450	480	480	1200	38.00
16-400	450	450	480	480	600	24.00
16-400	450	450	480	480	900	31.00
16-400	450	450	480	480	1200	38.00

Secondary Attenuators

All terminal units are available with attached secondary attenuators

Casing:

Manufactured from 18 swg. (1.2mm thick) folded galvanised mild steel sheet, formed into a rectangular casing, all longitudinal casing joints are mechanically sealed.

Flanges:

Intake and discharges incorporate rectangular flanges, which are mechanically fixed to the main body of the attenuator.

Splitters:

Arranged within the casing are vertical attenuating splitter sections manufactured from 21 swg. (0.8mm thick) Galvanised Mild Steel, fixed to the casing by rivets. Splitters are fitted at inlet and discharge with aerodynamically shaped bullnose fairings. Splitters are fitted with 22 swg. (0.7mm thick) expanded or perforated metal facings. Horizontal splitters are also available if required.

Acoustic infill:

Splitters and side linings are filled with an inert, non combustible, non hygroscopic, vermin and rot proof mineral fibre slab which will not support bacterial growth. Usually faced with a glass fibre tissue (FB), however hermetically sealed Melinex membrane bags (FG) are available wherever indoor air quality conditions demand.

Acoustic Performance Data - Secondary Attenuator Static Insertion Loss dB Models 30FB and 30FG

Terminal	Air	Air	Press.	width	height	length						
size	vol.	vol.	drop				125	250	O.B.C.	FHz	21/	41/
	1/5.	1113/11	Pa.				125	250	500	IK	2K	4K
4-100	24	86	neg.	300	200	600	6	10	17	22	18	16
4-100	94	338	60	300	200	600	6	10	17	22	18	16
4-100	24	86	neg.	300	200	900	8	14	26	33	27	22
4-100	94	338	65	300	200	900	8	14	26	33	27	22
4-100	24	86	neg.	300	200	1200	9	18	34	43	36	27
4-100	94	338	70	300	200	1200	9	18	34	43	36	27
5-125	47	169	neø.	300	200	600	6	10	17	22	18	16
5-125	142	511	60	300	200	600	6	10	17	22	18	16
5-125	47	169	neø.	300	200	900	8	14	26	33	27	22
5-125	142	511	65	300	200	900	8	14	26	33	27	22
5-125	47	169	neo	300	200	1200	9	18	34	43	36	27
5-125	142	511	70	300	200	1200	9	18	34	43	36	27
6 150	45	160	nod	200	200	600	6	10	17		10	16
0-150 6 150	40	756	neg.	200	200	600	0	10	17	22	10	10
6 150	210	/30	00	200	200	000	0	10	1/	22	10	10
0-150	45	102	neg.	300	200	900	ð	14	20	33	27	22
6-150	210	/50	65	300	200	900	8	14	26	33	2/	22
0-150	45	102	neg.	300	200	1200	9	18	34	43	30	27
6-150	210	/50	70	300	200	1200	9	18	34	43	30	27
8-200	80	288	neg.	300	300	600	6	10	17	22	18	16
8-200	375	1350	75	300	300	600	6	10	17	22	18	16
8-200	80	288	neg.	300	300	900	8	14	26	33	27	22
8-200	375	1350	80	300	300	900	8	14	26	33	27	22
8-200	80	288	neø.	300	300	1200	9	18	34	43	36	27
8-200	375	1350	85	300	300	1200	9	18	34	43	36	27
10.250	120	169	nod	250	200	600	6	7	12	17	12	0
10-250	625	400 2206	11Cg.	320	200	600	6	7	13	17	13	0
10-250	120	2200	00	220	200	000	0	12	20	1/	10	0
10-250	130	400	Teg.	220	200	900	9	12	20	25	19	12
10-250	120	2280	/0	350	300	900	9	12	20	25	19	12
10-250	130	468	neg.	350	300	1200	12	14	20	34	26	15
10-250	035	2280	80	350	300	1200	12	14	20	34	20	15
12-315	190	684	neg.	450	450	600	2	5	8	10	7	4
12-315	945	3402	60	450	450	600	2	5	8	10	1	4
12-315	190	684	neg.	450	450	900	4	/	12	15	11	5
12-315	945	3402	65	450	450	900	4	/	12	15	11	5
12-315	190	684	neg.	450	450	1200	5	10	16	19	14	7
12-315	945	3402	70	450	450	1200	5	10	16	19	14	7
14-355	235	846	neg.	450	450	600	2	5	8	10	7	4
14-355	1275	4590	60	450	450	600	2	5	8	10	7	4
14-355	235	846	neg.	450	450	900	4	7	12	15	11	5
14-355	1275	4590	65	450	450	900	4	7	12	15	11	5
14-355	235	846	neg.	450	450	1200	5	10	16	19	14	7
14-355	1275	4590	70	450	450	1200	5	10	16	19	14	7
16-400	330	1188	neg.	450	450	600	2	5	8	10	7	4
16-400	1652	2549	60	450	450	600	2	5	8	10	7	4
16-400	330	1188	neg.	450	450	900	4	7	12	15	11	5
16-400	1652	2549	65	450	450	900	4	7	12	15	11	5
16-400	330	1188	neg.	450	450	1200	5	10	16	19	14	7
16-400	1652	2549	70	450	450	1200	5	10	16	19	14	7

Acoustic Performance Data - Secondary Attenuator Static Insertion Loss dB Models 30FB and 30FG

Terminal	Air	Air	Press.	width	height	length						
size	vol.	vol.	drop						O.B.C.	FHz		
	l/s.	m3/h	Pa.	mm.	mm.	mm.	125	250	500	1k	2k	4k
24 x 16	595	2142	6	750	450	600	8	12	17	28	26	20
600x400	595	2142	7	750	450	900	11	16	23	37	34	24
	595	2142	9	750	450	1200	13	20	28	46	42	28
24 x 16	1200	4320	25	750	450	600	8	12	17	28	26	20
600x400	1200	4320	26	750	450	900	11	16	23	37	34	24
	1200	4320	28	750	450	1200	13	20	28	46	42	28
24 x 16	595	2142	7	900	450	600	9	14	19	32	31	23
600x400	595	2142	7	900	450	900	12	18	25	42	41	29
	595	2142	8	900	450	1200	14	22	31	50	50	35
24 x 16	1600	5760	47	900	450	600	9	14	19	32	31	23
600x400	1600	5760	50	900	450	900	12	18	25	42	41	29
	1600	5760	55	900	450	1200	14	22	31	50	50	35
24 x 16	595	2142	4	900	600	600	9	14	19	32	31	23
600x400	595	2142	4	900	600	900	12	18	25	42	41	29
	595	2142	5	900	600	1200	14	22	31	50	50	35
24 x 16	2200	7920	50	900	600	600	9	14	19	32	31	23
600x400	2200	7920	54	900	600	900	12	18	25	42	41	29
	2200	7920	58	900	600	1200	14	22	31	50	50	35
24 x 16	595	2142	2	900	750	600	9	14	19	32	31	23
600x400	595	2142	2	900	750	900	12	18	25	42	41	29
	595	2142	3	900	750	1200	14	22	31	50	50	35
24 x 16	2600	9468	45	900	750	600	9	14	19	32	31	23
600x400	2600	9468	48	900	750	900	12	18	25	42	41	29
	2600	9468	52	900	750	1200	14	22	31	50	50	35
24 x 16	595	2142	1	1200	750	600	9	14	19	32	31	23
600x400	595	2142	1	1200	750	900	12	18	25	42	41	29
	595	2142	2	1200	750	1200	14	22	31	50	50	35
24 x 16	3600	12960	48	1200	750	600	9	14	19	32	31	23
600x400	3600	12960	50	1200	750	900	12	18	25	42	41	29
	3600	12960	55	1200	750	1200	14	22	31	50	50	35
24 x 16	595	2142	1	1500	750	600	9	14	19	32	31	23
600x400	595	2142	1	1500	750	900	12	18	25	42	41	29
	595	2142	1	1500	750	1200	14	22	31	50	50	35
24 x 16	3800	13590	34	1500	750	600	9	14	19	32	31	23
600x400	3800	13590	37	1500	750	900	12	18	25	42	41	29
	3800	13590	40	1500	750	1200	14	22	31	50	50	35

Low Pressure Hot Water Re-heat Batteries - Dimensions Model 30RW

100	<u> </u>	-		
	A		 	

Terminal Size	W mm	H mm	L mm	X mm	Y mm	Wgt kg
4-100	300	200	200	370	270	10
5-125	300	200	200	370	270	10
5.5-140	300	200	200	370	270	10
6-150	300	200	200	370	270	10
6.5-160	300	200	200	370	370	10
7-180	300	300	200	370	370	13
8-200	300	300	200	370	370	13
10-250	350	200	200	420	370	14
12-315	450	450	200	520	520	15
14-355	450	450	200	520	520	15
16-400	450	450	200	520	520	15
2x16-						
600x400	750	450	200	820	520	20

All terminal units are available with factory installed low pressure hot water re-heat batteries.

Casing:

Manufactured from 18 swg. (1.2mm thick) folded galvanised mild steel sheet, formed into a rectangular casing, all casing joints are mechanically sealed.

Inlets and outlets incorporate rectangular flanges, which are mechanically fixed to the main body of the casing.

Water Tubes:

Manufactured from 10mm diam. copper tube to BS 1278 table Y.

Pipe Connections:

Plain male ends suitable for solder jointing.

Heat Exchange Fins:

Manufactured from 0.13mm thick rectangular aluminium plates, mechanically bonded to the copper tubes. Fins are spaced at 2.5mm intervals.

All low pressure hot water supplementary heater batteries incorporate an air vent and drain point.

Pressure Testing:

All low pressure hot water supplementary heater batteries are air pressure tested under water to a pressure of 3,000 kPa.

LPHW Re-Heat Battery Performance 82°C Flow, 71°C Return, 10 fpi **Model 30RW**

Terminal Size	Air Vol. I/s	Air Vol. m³/h	Dimer Width mm	nsions Height mm	Face Vel m/s	Air On C	1 Row Duty kW	Air Off C	Water Pd KPa	Water kg/s	Air Pd Pa	2 Row Duty kW	Air Off C	Water Pd kPa	Water kg/s	Air Pd Pa
4-100 4-100 4-100 4-100	24 47 71 94	87 170 256 338	300 300 300 300 300	200 200 200 200 200	0.40 0.78 1.18 1.57	16 16 16 16	0.8 1.6 2.2 2.7	43.6 43.4 42.0 46.1	0.7 2.4 4.6 6.7	17.3 34.6 47.6 58.4	1 4 8 12	1.3 2.4 3.5 4.4	60 59 57 55	3.0 1.7 3.4 5.0	28.1 52.6 75.8 95.2	2 7 13 21
5-125 5-125 5-125 5-125 5-125	47 94 118 142	170 338 425 511	300 300 300 300 300	200 200 200 200	0.78 1.57 1.97 2.32	16 16 16 16	2.2 2.7 3.2 3.4	42.0 46.1 38.9 35.6	4.6 6.7 9.0 1.8	47.6 58.4 69.3 73.6	8 12 18 25	3.5 4.4 5.2 6.0	57 55 53 51	3.4 5.0 6.9 8.9	75.8 95.2 112.6 129.9	13 21 32 43
5.5-140 5.5-140 5.5-140 5.5-140 5.5-140	46 92 139 185	166 331 500 666	300 300 300 300 300	200 200 200 200	0.77 1.53 2.32 3.08	16 16 16 16	1.5 2.7 3.3 4.0	43.5 40.2 35.8 34.0	2.8 7.9 2.1 3.0	32.9 57.6 71.6 86.6	4 12 24 39	2.7 4.3 5.7 7.0	59 55 50 47	2.0 2.9 4.0 5.9	58.4 92.9 123.2 151.5	64 21 42 68
6-150 6-150 6-150 6-150	45 115 185 210	162 414 666 756	300 300 300 300 300	200 200 200 200	0.75 1.92 3.08 3.50	16 16 16 16	1.5 3.1 4.0 4.5	43.4 38.6 33.9 33.6	2.2 6.7 2.5 3.1	32.5 67.1 86.6 97.4	4 17 39 48	2.4 5.1 6.7 7.4	60 53 46 45	10.0 6.7 4.5 5.5	51.9 110.4 145.0 160.2	6 30 68 84
6.5-160 6.5-160 6.5-160 6.5-160 6.5-160	60 120 181 241	216 432 652 868	300 300 300 300 300	300 300 300 300	0.67 1.33 2.01 2.68	16 16 16 16	2.0 3.5 4.7 5.8	44 40.5 37.7 36	5.7 2.7 4.7 6.8	43.3 75.8 102.6 124.7	3 9.3 19 31	3.1 5.8 8.0 9.8	60 56 53 42	4.0 4.7 8.4 9.8	68.2 124.9 172.1 213.2	5 16 33 53
7-180 7-180 7-180 7-180 7-180	76 153 229 305	274 551 824 1098	300 300 300 300 300	300 300 300 300	0.84 1.70 2.54 3.39	16 16 16 16	2.6 4.2 5.6 6.9	44 38.9 36.2 39.7	8.7 3.8 6.4 9.4	55.4 91.3 120.6 149.1	4.3 14 28 46	4.0 7.0 9.3 11.6	60 54 48 48	6.0 6.6 6.7 10.2	86.1 151.5 200.4 251.1	7.5 25 49 80
8-200 8-200 8-200 8-200 8-200	80 190 280 375	288 684 1008 1350	300 300 300 300 300	300 300 300 300 300	0.89 2.11 3.11 4.17	16 16 16 16	2.7 4.9 6.5 7.5	43.9 31.4 35.2 32.6	9.6 5.0 8.4 5.0	58.4 106.1 140.7 162.3	5 20 39 65	4.2 8.2 6.9 11.3	60 52 48 41	6.6 9.0 9.0 7.2	90.9 177.5 149.4 244.6	8 36 69 113
10-250 10-250 10-250 10-250	130 350 520 635	468 1260 1872 2236	350 350 350 350 350	300 300 300 300	1.24 3.33 4.95 6.05	16 16 16 16	3.7 7.2 8.8 9.0	39.9 33.0 30.0 27.9	3.0 4.5 6.7 7.0	80.1 155.8 190.5 194.8	11 57 113 156	6.1 10.7 15.4 16.1	55 41 41 37	5.2 6.5 10.9 11.9	132.0 231.6 333.3 348.5	19 101 197 273
12-315 12-315 12-315 12-315 12-315	190 565 750 945	684 2034 2700 3402	450 450 450 450	450 450 450 450	0.94 2.79 3.70 4.67	16 16 16 16	5.7 11.5 13.4 12.8	40.8 33.0 30.8 27.2	7.8 8.1 10.8 7.0	123.4 249.6 289.2 276.8	10 65 105 156	9.1 19.6 21.7 22.9	56 45 40 36	7.3 15.1 16.1 17.8	197.0 425.3 469.9 496.1	18 114 185 273
14-355 14-355 14-355 14-355	235 800 1035 1275	846 2680 3726 4590	450 450 450 450	450 450 450 450	1.16 3.95 5.11 6.30	16 16 16 16	7.1 15.0 17.6 18.0	41.1 32.7 30.1 27.7	5.7 9.7 13.1 13.8	154.5 321.2 380.5 390.5	9 64 112 160	10.2 25.6 30.8 32.3	52 45 41 37	7.0 22.2 31.7 34.7	220.6 553.9 666.0 699.6	16 112 196 279
16-400 16-400 16-400 16-400	320 780 1240 1700	1152 2808 4464 6120	450 450 450 450	450 450 450 450	1.58 3.85 6.12 8.40	16 16 16 16	8.3 12.3 19.0 19.5	37.4 29.0 28.6 25.5	5.6 7.1 14.7 15.7	178.8 265.6 409.1 423.2	12 57 129 213	13.6 26.0 33.4 35.6	51 44 38 33	9.0 25.0 40.4 45.8	293.9 562.8 722.3 771.2	22 99 218 372
600 x 400 600 x 400 600 x 400 600 x 400 600 x 400	1890 2360 3300 3775	6804 8496 11880 13590	710 710 710 710 710	450 450 450 450	5.92 7.39 10.33 11.82	16 16 16 16	13.3 13.5 13.6 13.7	21.8 20.7 19.4 19.0	7.6 7.8 8.0 8.0	288.5 291.6 295.2 296.3	118 173 305 384	25.0 25.8 26.4 26.6	27 25 23 22	25.2 24.0 25.1 25.5	541.1 558.7 572.3 576.8	207 303 535 623

All terminal units are available with factory installed electric re-heat batteries.

Casing:

Manufactured from 18 swg. (1.2mm thick) folded galvanised mild steel sheet, formed into a rectangular casing, all casing joints are mechanically sealed.

Intake and discharges incorporate rectangular flanges, which are mechanically fixed to the main body of the casing.

Electric Elements:

Manufactured from stainless steel tubing with copper resistance wire and magnesium oxide insulation.

High Temperature Cut-Out:

All electric supplementary heater batteries incorporate automatic and manual high temperature cut-out safety devices, which disconnect the electrical power in the event that the air temperature exceeds a pre set maximum.

Pressure Switch:

All electric supplementary heater batteries incorporate a positive pressure switch which does not permit the heating elements to be energised unless there is positive air pressure (indicating airflow) available.

Selection

Table 1 opposite provides guidance as to the input voltage, output rating and number of stages available for electric re-heat batteries.

Terminal	units	incorporating	analogue	controls	should	be	limited	to	а
maximur	n of tv	vo stages.							

Thyristor controls are recommended for output ratings in excess of those indicated in table 1.

In order to prevent stratification of the discharge air, a maximum recommended discharge temperature of 39°C should not be exceeded

Air Temp Rise ^oC = <u>kW</u>

1.2 x 1.02 x m3/s.

Options

- 24Vac control transformer.
- Isolator
- Door interlocked isolator

Input Voltage Vac.	Phase	Freq. Hz.	Output kW.	Stages		
230	1	50	0.1-4.5	1		
415	3	50	0.1 - 13.0	1, 2, 3		

Table 1

- Power circuit fusing.
- Dust tight construction.

W kW kW kW
5
kw kw kw k
(W KW KW KW
150 160 170 1X
KW KW NW
kw kw
kw kw
kw kw kw
kw kw kw
kw kw k
Width Height kW
Vol. Vol. Pd.

High temperature cut-out settings:

Automatic - 70°C Manual - 120°C

Maximum recommended Leaving Air Temperature - 39°C

Electric Re-Heat Battery Performance

Model 30RE

Model 30GB - Insulation faced with non woven tissue as standard.

Model 30GG - Insulation covered with hermetically sealed Melinex membrane bags for indoor air quality applications.

Terminal	w	Н	X	Y	Spigot	Wgt											
Size	mm	mm	mm	mm	diam	qty	kg										
					mm		mm		mm		mm		mm		mm		
4-100	300	200	370	270	150	A-K	200	n/a.	250	n/a.	315	n/a.	355	n/a.	400	n/a.	10.0
5-125	300	200	370	270	150	A-K	200	n/a.	250	n/a.	315	n/a.	355	n/a.	400	n/a.	10.0
5.5-140	300	200	370	270	150	A-K	200	n/a.	250	n/a.	315	n/a.	355	n/a.	400	n/a.	10.0
6-150	300	200	370	270	150	A-K	200	n/a.	250	n/a.	315	n/a.	355	n/a.	400	n/a.	10.0
6.5-160	300	300	370	370	150	A-K	200	A-K	250	A-K.	315	n/a.	355	n/a.	400	n/a.	12.0
7-180	300	300	370	370	150	A-K	200	A-K	250	A-K.	315	n/a.	355	n/a.	400	n/a.	12.0
8-200	300	300	370	370	150	A-K	200	A-K	250	A-K.	315	n/a.	355	n/a.	400	n/a.	12.0
10-250	350	300	420	370	150	A-K	200	A-K	250	A-K	315	n/a.	355	n/a.	400	n/a.	12.0
12-315	450	450	520	520	150	A-K	200	A-K	250	A-K	315	A-K	355	A-K	400	A-K	15.0
14-355	450	450	520	520	150	A-K	200	A-K	250	A-K	315	A-K	355	A-K	400	A-K	15.0
16-400	450	450	520	520	150	A-K	200	A-K	250	A-K	315	A-K	355	A-K	400	A-K	15.0
24x16-																	
600x400	750	450	820	520	150	A-K	200	A-K	250	A-K	315	A-K	355	A-K	400	A-K	25.5

Standard Control Sequences

Single Duct • Analogue Electronic • Pressure Independent

Control Package 1 EL • Cooling Only

The operating sequence for a cooling application is as follows:

- 1. On a rise in space temperature, the thermostat regulates the controller/actuator to increase the airflow.
- 2. At a space temperature of 1°C above thermostat setpoint, the maximum airflow is maintained at a preselected setting.
- 3. On a decrease in space temperature, the thermostat regulates the controller/actuator to reduce airflow.
- 4. At a space temperature of 1°C below thermostat setpoint, the minimum airflow is maintained at a preselected setting.
- 5. Airflow is held constant in accordance with thermostat demand. Any changes in duct air velocity due to static pressure fluctuations are sensed and compensated for, resulting in pressure independent control.

Room Temperature Increase

Control Package 2 EL • Heating Only

The operating sequence for a heating application is as follows:

- 1. On a decrease in space temperature, the thermostat regulates the controller/actuator to increase the airflow.
- 2. At a space temperature of 1°C below thermostat setpoint, the maximum airflow is maintained at a preselected setting.
- 3. On a rise in space temperature, the thermostat regulates the controller/actuator to reduce airflow.
- 4. At a space temperature of 1°C above thermostat setpoint, the minimum airflow is maintained at a preselected setting.
- 5. Airflow is held constant in accordance with thermostat demand. Any changes in duct air velocity due to static pressure fluctuations are sensed and compensated for, resulting in pressure independent control.

Control Package 3 EL • Cooling/Heating with Auto - Changeover

The heating/cooling thermostat features separate temperature setpoints and separate min./max. velocity limits for heating and cooling operation. The automatic changeover relay energises either the heating or cooling mode of the thermostat in response to the duct temperature. The operating sequence for a heating/cooling application is as follows:

- 1. At a duct temperature above 24°C, the heating side of the thermostat is energised.
- 2. On a decrease in space temperature, the thermostat regulates the controller/actuator to increase the airflow.
- 3. At a space temperature of 1°C below thermostat heating setpoint, the maximum airflow is maintained at a preselected setting.
- 4. On a rise in space temperature, the thermostat regulates the controller/actuator to increase the airflow.
- 5. At a space temperature of 1°C above thermostat heating setpoint, the minimum airflow is maintained at a preselected setting.
- 6. At a duct temperature below 18°C the cooling side of the thermostat is energised.
- 7. On a rise in space temperature, the thermostat regulates the controller/actuator to increase the airflow.
- At a space temperature of 1°C above thermostat cooling setpoint, the maximum airflow is maintained at a preselected setting.
 On a decrease in space temperature, the thermostat regulates the controller/actuator to reduce the airflow.
- 10. At a space temperature of 1°C below thermostat cooling setpoint, the minimum airflow is maintained at a preselected setting.
- 11. During both the heating and cooling cycle, airflow is held constant in accordance with thermostat demand. Any changes in duct air velocity due to static pressure fluctuations are sensed and compensated for, resulting in pressure independent control.

Standard Control Sequences

Single Duct • Analogue Electronic • Pressure Independent

Control Package 4 EL • Cooling With Morning Warm-Up

The operating sequence for a cooling application is as follows:

- **1.** On a rise in space temperature, the thermostat regulates the controller/actuator to increase the airflow.
- **2.** At a space temperature of 1°C above thermostat setpoint, the maximum airflow is maintained at a preselected setting.
- **3.** On a decrease in space temperature, the thermostat regulates the controller/actuator to reduce airflow.
- **4.** At a space temperature of 1°C below thermostat setpoint, the minimum airflow is maintained at a preselected setting.
- **5.** Airflow is held constant in accordance with thermostat demand. Any changes in duct air velocity due to static pressure fluctuations are sensed and compensated for, resulting in pressure independent control.

6. When duct airflow temperature is above 24°C (warm-up cycle), the inlet sensor switches a relay module and the actuator will open the box damper for maximum airflow.

Control Package 5 EL • Cooling with Electric Reheat Plus Auxiliary Minimum Air Volume

The reheat thermostat features a separate temperature setpoint and a separate auxiliary velocity limit for reheat control. The reheat relay energises up to three stages of electric reheat in response to the thermostat. The operating sequence for a reheat application is as follows:

- 1. On a rise in space temperature, the thermostat regulates the controller/actuator to increase the airflow.
- 2. At a space temperature of 1°C above thermostat setpoint, the maximum airflow is maintained at a preselected setting.
- **3.** On a decrease in space temperature, the thermostat regulates the controller/actuator to reduce the airflow.
- 4. At a space temperature of 1°C below thermostat setpoint, the minimum airflow is maintained at a preselected setting.

- 5. On a further decrease in space temperature the heating side of the thermostat is activated, automatically initiating the auxiliary velocity limit. Airflow is maintained at the preselected auxiliary setting.
- **6.** The three stages of reheat are energised in sequence in response to the thermostat.

The first stage is energised 0.5°C above the heating setpoint. The second stage is energised 0.5°C below the heating setpoint. The third stage is energised 1°C below the heating setpoint.

7. Airflow is held constant in accordance with thermostat demand. Any changes in duct air velocity due to static pressure fluctuations are sensed and compensated for, resulting in pressure independent control.

The Following Additional Control Sequences are Also Available:

- 6 EL Cooling with Electric Re-heat Plus Morning Warm-up.
- 7 EL Cooling with On/Off Hot Water Re-heat.
- **8 EL** Cooling with Proportional Hot Water Re-heat (controls 0 10 Vdc proportional hot water valve supplied by others).
- **9 EL** Cooling with Time Proportional Hot Water Re-heat (requires the use of a time proportional water valve (optional or by others).
- **10 EL** Constant Volume Operation.

Suggested Specifications

Single Duct Variable or Constant Volume Terminals - 3000 Series

- 1.01 Supply and install single duct variable or constant volume terminal units of the sizes and capacities as indicated on the drawings. Units shall be pressure independent with analogue electronic, (or digital electronic) controls. Units shall be as manufactured by Advanced Air (UK) Ltd.
- 1.02 The entire terminal shall be designed and built as a single unit. The units shall be provided with a primary variable air volume damper that controls the air quantity in response to electronic temperature sensor. The space limitations shall be reviewed carefully to ensure that all units will fit into the space allowed.
- 1.03 Unit casings shall be manufactured from 18swg. (1.2 mm. thick) galvanised mild steel sheet. Acoustic/thermal lining: the terminal is internally lined with a 25 mm. thick acoustic/thermally insulating foam which is Melamine based, open cellular construction, having a non-woven black tissue facing and complying with class O fire rating. This material is adhered to all internal surfaces.
- 1.04 Units shall be rated to operate in left hand or right hand mode by turning the unit over. Casing leakage shall not exceed 2% of terminal rated airflow at 125 Pa interior casing pressure. All high pressure side casing joints shall be sealed with an approved sealant and high pressure side casing leakage shall not exceed 2% of terminal rated airflow at 750 Pa.
- 1.05 Units shall have round inlets for the primary air connections and shall have a 150 mm. deep inlet spigot for field connection. The outlets shall be rectangular and suitable for flanged duct connections. Casing shall have mounting brackets for hanging from concrete slab.
- 1.06 The damper shall be of rectangular, multiple inclined opposed blade construction and designed to operate on a 45° arc. Blades shall be minimum 18swg. (1.2 mm. thick) galvanised mild steel, single thickness construction with heavy duty gasket glued to the blades. The blades shall be screwed through the damper shaft to ensure that no slippage occurs. Blade shafts shall pivot on corrosion free bearings. Damper leakage shall not exceed 2% of the rated terminal air volume at 750 Pa. inlet static pressure.
- 1.07 Entire terminal unit shall be factory assembled with (electronic) controls. All components, including all controls except the room mounted temperature sensor and (field wiring) shall be factory installed and mounted with the unit.
- 1.08 Provide a (analogue electronic, digital electronic) flow control device that will limit the maximum and minimum airflow to that scheduled on the drawings. Airflow limits shall be factory set. Temperature sensor signal shall reset the flow control device to adjust primary airflow to match load requirements. Control of the terminal unit shall be pressure independent.
- 1.09 The terminal unit shall be capable of operation as described herein with inlet static pressure of 12 Pa. at full cooling.
- 1.10 Units shall incorporate a single point electrical connection for the entire unit. All electrical components shall be CE marked. All electrical components shall be mounted in a control box.
- 1.11 All sound data shall be compiled in an independent laboratory.

Advanced Air M

Fan Powered Terminals

Contents

PRODUCT DESIGN AND APPLICATION

Product Overview	Page No. F 1
Design Characteristics and Application	F 3
EPIC Fan Technology	F 4
Energy Savings	F 5
Low Noise Level	F 5
Controls General Information Control Operation	F 6
Electric Heater Batteries Application Guidelines	F 7
Suggested Specifications	F 8

. .

Copyright© 2001 by Advanced Air (UK) Ltd. All rights reserved. The information contained in this publication is correct at the time of printing. Continuous product development means that from time to time product specifications and other information will change. The company reserve the right to modify or withdraw any of the products described without prior notice.

Product Overview

Nailor is proud to introduce the next generation of fan powered terminal units – designed to lead the industry.

Providing products that incorporate the desires and requirements of the Building Services industry that we serve, has been a primary focus at Nailor.

Following an extensive and intense period of research, (involving consultation with design engineers and contractors) design and development, we have produced a range of fan powered terminal units that we believe meet the exacting criteria of the Building Services industry.

On the next page, you can see at a glance some of the unique universal features that have been incorporated into the new generation of Nailor fan powered terminals, providing the benefits of high performance operation and many site friendly features to aid installation.

All Nailor terminals include the following additional features as standard:

- Compatibility with analogue electronic and digital controls.
- Factory supplied controls are tested and calibrated before shipment.
- Fan motors and heaters are energised and dielectric tests are performed on every terminal to ensure correct operation prior to shipment.
- Custom fabricated motor/fan combinations are mounted on special 1.6mm thick angles and isolated from casing with rubber insulators.
- All motors incorporate an antibackward rotation device to prevent backward rotation upon start-up.
- Units can be rotated in the field for right or left hand configuration.

Features

Features common to Series Terminals:

- 18 swg. (1.2mm thick) channel space frame construction. Provides an extremely rigid terminal.
- 18 swg. (1.2mm thick) Removable Panels on four sides provides access from above, beside or below.
- Inclined Opposed Blade Primary Air Damper minimises noisy turbulence and ensures smooth accurate control.
- Acoustic/Thermal • **Lining.** The terminal is internally lined with a 25mm thick acoustic/thermally insulating foam which is Melamine based, open cellular construction, having a non-woven black tissue facing, and complying with Class O fire rating. The material is adhered to all internal surfaces and inside box/channel sections.
- Solid State Fan Speed Controller is custom designed by Nailor for each fan size and provides the widest turn-down available for maximum flexibility and accurate primary/induced air balancing.
- 'Diamond Flow' Multi-point Averaging Sensor provides accurate primary air control.

Features unique to Nailor Series Flow Terminals:

- **Perforated Diffusion Baffle** optimises mixing of primary and induced airflows and improves sound performance.
 - Hot Water Coils for supplementary heat are mounted at discharge
 - Maintenance Access Panels on top, bottom and sides are standard.

Design Characteristics and Application

Introduction

Fan Powered Terminal Units are an economical means of both cooling and periodically heating the perimeter zones of a building utilising a single duct control system. In addition to inherent VAV economies, fan powered terminals utilise the free heat derived from lighting, people and other equipment and induce this warmer plenum air from the building core ceiling plenum space and recirculate it to rooms calling for heating. If additional heating is required, optional supplementary heating coils may be activated. The need for a central source of warm air is eliminated.

During weekend or night-time operation, the central fans may be turned off. Heat, if required, may be provided by the terminal unit fan itself.

Fan Powered Terminal Units are a popular design for office buildings because they provide performance benefits by way of lower first cost, (such as reduced central system fan power and smaller ductwork), lower operating cost, the recovery of waste heat

and the capacity for improved air circulation and diffuser performance. Fan terminals are configured for series flow, containing a fan motor assembly and a variable air volume damper to modulate primary air. In a series unit (Fig. 1), the fan sits in the primary airstream and runs constantly when the zone is occupied.

Series fan terminals boost both induced air and primary air, so the inlet static pressure need only overcome the loss across the damper (less than 12.5 Pa with Nailor terminals).

Series Flow Terminals – (Constant Volume)

A series fan powered terminal unit mixes primary air with induced plenum air by using a continuously operating fan during the occupied mode. It provides a constant volume of air to the space regardless of load.

As the cooling load decreases, the zone thermostat throttles the primary air damper. The terminal fan makes up the difference by inducing more return air from the plenum. At low cooling loads, the primary air may close or go to a minimum ventilation setting. If the zone temperature drops still further, the thermostat can energise optional supplemental heat. The sequence reverses when the load is increased.

The series terminal is therefore a constant volume, variable temperature unit. (See Fig. 2).

Series units should only be used with pressure independent controls. Series fans must be adjusted to match the maximum cooling air volume, to ensure that the primary air does not exceed the fan air volume as this would result in the short-circuiting of primary air directly into the ceiling plenum and waste energy. A pressure independent controller and inlet flow sensor controls the primary air damper to compensate for changes in inlet static pressure and ensures design air volume is maintained.

Application

Fan powered terminals are installed in the ceiling return air plenum and take return air from the plenum or have the induction port(s) ducted to the space. For maximum heat pick-up and minimum sound radiation, the assembly should ideally be located in the ceiling cavity, preferably over a corridor, toward the building core.

Careful consideration should be given to both overall sound level and change in sound level in the space. With series terminals the sound remains virtually constant as the fan runs continuously.

When properly applied, the relatively long distance between the fan terminal discharge outlet and the conditioned space it serves minimises any concern about discharge sounds in the space due to the terminal, and only the radiated sound, below the space where it is located, need be considered. Both the primary air damper and fan act as sound sources in both units and each generates discharged and radiated sound. Series units will have the fan sized for the full airflow and downstream resistance.

Fan Powered Induction Systems combine the energy saving diversity of single duct VAV shut-off systems with the additional benefits of heat reclamation. In most climates, fan powered systems are a lower operating cost alternative. Plenum air heating eliminates the inefficiencies inherent in reheating cold primary air. Utilising warmer plenum air allows for recovery of heat from lighting and other heat sources in the building. Fan Powered Terminals move more air through a room at low cooling loads and during heating compared to single duct VAV reheat systems, thereby providing improved air circulation.

EPIC Fan Technology

ECM Motor Control Technology From Nailor

The Diamond sensor is standard on all Nailor VAV terminal units that are equipped with pressure independent controls.

In addition to the "Diamond Flow" multi-point averaging sensor and opposed blade damper configuration of the primary air damper that are described in detail on page G 3 of this catalogue, all Nailor fan powered terminals incorporate the following features and benefits:

Nailor Epic Fan Technology

Nailor's 35SST, 37SST, 35S and 37S series units are all equipped with Nailor's EPIC fan technology. EPIC cuts the energy consumption to the fan by 50 to 67% at typical fan set points (even more at lower set points) while making the motor and fan assembly a completely predictable and programmable pressure independent assembly. Nailor's EPIC option allows the fan discharge air volume to be set at the factory before shipment to the project site or dynamically reset the room demand by the DDC controller. There is as much difference between this motor and an AC induction motor as there is between a DDC controller and a pneumatic controller. EPIC fan technology starts with a smart motor, (a DC electronically commutated motor - ECM) and a fan reset controller. Each motor is equipped with its own AC to DC converter and variable frequency drive. With the reset controller, the motor knows its speed, the amount of torque it is producing and what airflow is required. It can calculate airflow from the known data and automatically adjust its torque and speed to meet the required output regardless of external conditions, even if they are not constant and even if they are constantly changing.

Nailor was the first to introduce this technology to the industry in 1997. It is still revolutionary as it allows fans to be preset at the factory or from the computer terminal, never requiring the commissioning contractor to go into the ceiling void for fan adjustment. Additional features are sealed ball bearings that never require lubrication, slewed speed ramps and soft starts that never apply torque to the mounting hardware, Nailor's EPIC fan technology is industry leading state-of-the-art. It incorporates the highest efficiency and most predictable and controllable motor options in any fractional horsepower application.

In terms of air handling capability, the wider operating range of the ECM motor allows each terminal model equipped with ECM to replace two or more terminal models equipped with induction motors.

This feature alone provides several benefits: a simpler product line to choose from, little or no equipment changes necessary when tenants change, more similar sized terminal units on the project, decreased spare parts inventory and increased contractor flexibility. The lower operating temperature of the ECM motor requires less energy to offset the heat gain from the motor. In addition to all of these standard features, there are two primary benefits - energy savings and the ability to pre-set the fan air volume at the factory.

How Do You Pre-Set Fan Air Volume?

Pre-setting the fan air volume has always been a problem for fan powered terminal manufacturers for two main reasons. Firstly, AC motors are not synchronous machines. Secondly, the motor speed (rpm) and consequently the unit air volume changes when static pressure changes. The difficulty in pre-setting the fan air volume lies in estimating the motor workload required at the project under actual operating conditions. The fan will not produce the same volume of air as it did at the factory without the added resistance of the discharge ductwork. Generally as there has been no way to accurately predict the downstream static pressure, as it would exist at the project site, it has been impossible to pre-set the fan air volume. The ECM motors, being DC, are synchronous machines. The motors are programmed to calculate the work that they are doing. By comparing the work accomplished to the actual air volume requirement, the motor adjusts itself to produce a constant air volume. This value can be pre-set on the assembly line at the factory. It is field adjustable by manipulation of a potentiometer with a screwdriver, or more conveniently, a 0-10 volt DC signal from a DDC controller. The importance of this feature is that a commissioning engineer never has to go into the ceiling void to adjust the fan air volume. This relieves the commissioning engineer of a large proportion of his work per zone on fan powered terminal units and associated problems. This feature also removes the uncertainty of diffuser airflow measurements with hood type measuring devices. The fan air volume is guaranteed to be within ± 5% of the factory set value. There is available a factory supplied table indicating air volume related to a 0-10 volt DC signal from a DDC controller to facilitate fan air volume adjustment from a computer terminal when DDC controls are used. This is a great benefit to the building owner, the controls contractor, the mechanical services contractor and the ceiling contractor.

Energy Savings

The following graphs show the energy savings of fan powered terminal units equipped with ECM motors compared to terminal units equipped with Induction (Permanent Split Capacitor) motors.

Operating Costs

The above graphs have been calculated on an operating period of 66 hours per week, with electricity at 70p per kWh.

What is the Payback period on ECM motors compared to induction motors?

The payback period varies, it depends on which terminal unit is used, at what point the air volume is set, the duration of operation of the equipment and how much is being paid for electricity. If the equipment is operated for greater period of time or if electricity cost is higher, then the payback period will change proportionally. Considering the preset capability of the motor, there will also be a reduced cost for commissioning. Typically with the operating costs as shown above, the payback period should be between 6 and 18 months.

Low Noise Levels

In addition to those items listed above, Nailor holds down noise levels in the occupied space with heavy gauge metal casings, high quality insulation and multiple isolation points between motors and casings. Notice that the minimum static requirement on series fan powered terminal units is 12 Pa.

Controls - General Information

For a description of individual control components; see the controls overview section of this catalogue.

Analogue Electronic

The analogue electronic controls provide pressure independent control. The components are matched and calibrated and provide regulated airflow in response to the electronic room temperature sensor/controller, which is furnished as a part of the control package. Minimum and maximum airflow settings are adjusted at the temperature sensor/controller, using a digital voltmeter. It is not necessary to adjust flow setting at the terminal in the ceiling space.

The new range of Nailor analogue electronic controls utilise the 'Diamond Flow' multi-point averaging sensor as standard for accurate flow measurement.

The electronic temperature sensor/controller has a fixed $1^{\circ}C$ proportional band regardless of minimum or maximum velocity setpoints and provides a linear reset function. The electronic

controller/actuator features an on-board flow transducer.

Electric actuators are not spring return devices (there is no normally open or normally closed action). If there is a loss of power to the terminal, the damper will remain in the position it was in at the time of power failure. All electric components use low voltage (24 volt) controls. A step down transformer is provided as standard.

Direct Digital Controls

Nailor Fan Powered Terminals are generic in nature and compatible with all DDC controls currently available.

The 'Diamond Flow' multi-point averaging flow sensor can be supplied and mounted if required.

Controls may be factory mounted and wired or field installed by the controls contractor.

A 24 volt control transformer and fan relay are provided as standard on all fan powered terminals intended for use with digital controls.

Control Operation • Series Flow (Constant Volume) • Models 35S and 35SST

Pressure Independent

Occupied Cycle

1. The series terminal fan is directly or indirectly interlocked and energised before or when the central system starts up.

Nailor recommends that the terminal fan is indirectly interlocked by means of an airflow switch (optional) which senses primary air pressure at the inlet. Upon central system start up, the fan in the terminal is automatically energised.

- 2. On a rise in room temperature, the temperature sensor/controller sends a signal to increase the flow of cold primary air.
- 3. As more cold air is supplied to the fan section, less warm air is induced from the ceiling space or plenum.
- 4. When the room temperature exceeds the setpoint by 1°C or more, cold airflow is maintained at the maximum setting. The maximum setting is the same as the total fan volume setting.
- 5. On a decrease in room temperature, the temperature sensor/controller sends a signal to decrease the flow of cold primary air.
- 6. As less cold air is supplied to the fan section, more warm air is induced from the ceiling space.
- 7. When the room temperature and temperature sensor/controller output signal reach the setpoint, the cold airflow is at its minimum limit (usually zero) and the fan is supplying the maximum volume of induced air.
- 8. If room temperature continues to drop, an optional heating coil may be energised.
- 9. When the optional airflow switch is supplied, and the central system is turned off (night-time or weekend), the series terminal fan is shut down upon loss of primary air.

Room Temperature Increase

Central System Off - Unoccupied Cycle Night Set Back (opt.)

Room Temperature Increase

Analogue Electronic Sequence	Code	Analogue Electronic Sequence	Code
Cooling (continuous operation)	A1	Cooling with night shutdown	B1
Cooling with morning warm up (continuous operation)	A2	Cooling with morning warm up and night shutdown	B2
Cooling with electric or on-off hot water heat (continuous operatio	n)A3	Cooling with electric or on-off hot water heat and night shutdown	B3
Cooling with proportional hot water heat (continuous operation)	A4	Cooling with proportional hot water heat and night shutdown	B4
Cooling with night cycle	A5	Cooling with night temp. set-back cycle	B5
Cooling with morning warm up and night cycle	A6	Cooling with morning warm up and night temp. set-back cycle	B6
Cooling with electric or on-off hot water heat and night cycle	A7	Cooling with electric or on-off hot water heat and night temp. set-back cycle	B7
Cooling with proportional hot water heat and night cycle	A8	Cooling with proportional hot water heat and night temperature set-back cycl	e B8

Electric Heater Batteries - Application Guidelines

Discharge Air Temperature

When considering the capacity and airflow for the heater, discharge air temperature can be an important factor. Rooms use different types of diffusers, and they are intended to perform different functions. Slots that mix the air at the glass and set up air curtains within the room, must be able to discharge the air to low level in the room. Hot air will be too buoyant to be effective in this case. Discharge air temperatures for this application should be in the $29 - 32^{\circ}$ C range.

Diffusers in the centre of the room mix their discharge air as it crosses the ceiling. Discharge air temperatures in this application can be as high as 41 $^{\circ}$ C and still be effective. However, if the return air grilles are in the discharge air pattern, the warm air will be returned to the plenum before it heats the room. Again, the air temperature needs to be mixed to an acceptable temperature that can be forced down into the occupied space by the time the air gets to the walls. Discharging warm air into the room at temperatures above 41 $^{\circ}$ C usually will set up stratification layers and will not keep the occupants warm if there is a ceiling return because only the top 300 – 600 mm of the room will be heated.

The maximum approved discharge air temperature for any Nailor Fan Powered VAV Terminal Unit with supplemental heat is 39°C. No heater should be allowed to exceed this temperature.

Electric Heater Selection

To properly select an electric heater, three things must be determined: the heat requirement for the room, the entering air temperature and the desired discharge air temperature. The heat requirement for the room is the sum of the heat loss calculation and the amount of heat required to raise the entering air temperature to the desired room temperature. Usually, the second item is small compared to the first for fan powered terminal units in a return air plenum. The heat required to raise the return air temperature can be calculated from the following equation:

$$kW = m^3/s \ x \ 1.02 \ x \ 1.2 \ x \ \Delta t$$

Next, the desired discharge air temperature should be ascertained. This will depend on the type of diffusers that are in the room. The desired heating airflow for the room can then be calculated using the following equation:

$$m^{3}/s = \frac{kW}{1.2 \times 1.02 \times \Delta t}$$

Assuming 21°C supply air temperature to the heater, the room airflow can be selected directly from the chart. Start at the left at the design kW. Move horizontally to the desired discharge air temperature. Then, move vertically down to the air volume at the bottom of the chart.

The kW can be selected directly from the chart. Start at the bottom with the design air volume into the room. Move vertically up to the line that represents the desired discharge air temperature. Then, move left to the kW.

The discharge air temperature can also be selected directly from the chart. Start at the bottom with the design air volume into the room. Move to the left side of the chart and find the design kW. Move horizontally and vertically into the chart until the lines intersect. The intersection will be the desired discharge air temperature. Interpolation between the curves is linear.

Recommended Selection:

The table below is a quick reference guide, to illustrate the relationship between electrical power supply, heater capacity in kilowatts and terminal unit size that are available for Nailor Fan Powered Terminals.

- Digital control terminals are available with up to 3 stages of heat. Analogue electronic control terminals are available with 1 or 2 stages of heat only. A minimum of 4 kW is required for 3 stages.
- Voltage and kilowatt ratings are sized so as not to exceed 48 amps.
- A minimum airflow of 33 l/s per kW is required for any given terminal in order to avoid possible nuisance tripping of the thermal cutouts.
- Discharge air temperature should not exceed 39°C.

Optional Accessories:

- Door interlocking disconnect switch.
- Power circuit fusing.
- Dust tight control enclosure.

Unit Size	Maximum 230v 1 Phase	Kilowatts 415v 3 Phase
3	8.0	11.5
5	8.0	20.5
7	8.0	32.5

Heater Selection Chart

Assuming 21°C inlet air temperature at heater

Diagonal lines are constant output temperature

Suggested Specifications

Series Flow (Constant Volume) Fan Powered Terminals - Models 35S/SST & 37S/SST

- 1.01 Supply and install constant volume series fan powered terminal units of the sizes and capacities as indicated on the drawings. Units shall be pressure independent with analogue electronic, (or digital electronic) controls. Units shall be manufactured by Advanced Air UK Limited Models 35S, 37S, 35SST, 37SST.
- 1.02 The entire terminal unit shall be designed and built as a single unit. The units shall be provided with a primary variable air volume damper that controls the air quantity in response to a (pneumatic, electronic) temperature sensor. The space limitations shall be reviewed carefully to ensure that all units will fit into the space allowed.
- 1.03 Unit casings shall be space frame construction utilising 18swg. (1.2mm thick) galvanised steel corner structural members and galvanised steel panels. Acoustic/thermal lining: the terminal is internally lined with a 25mm thick acoustic/thermally insulating foam which is Melamine based, open cellular construction, having non-woven black tissue facing and complying with class O fire rating. This material is adhered to all internal surfaces and inside box/channel sections.
- 1.04 Unit casing shall have four access panels, one on each side of the unit and one on the bottom and top for easy access to motor and fan assembly and for maintenance and replacement of parts without disturbing duct connections. The unit shall be rated to operate in left hand or right hand mode by turning the unit over. Access panels shall be attached to casing with (screws, quick acting latches, hinges). Casing leakage shall not exceed 2% of terminal rated airflow at 125 Pa interior casing pressure. All high pressure side casing joints shall be sealed with approved sealant and high pressure side casing leakage shall not exceed 2% of terminal rated airflow at 750 Pa.
- 1.05 Units shall have round inlets for the primary air connections and shall have a 150mm deep inlet duct spigot for field connection. The outlets shall be rectangular and suitable for flanged duct connections. Casing shall have mounting brackets for hanging from a concrete slab.
- 1.06 The damper shall be of rectangular, multiple inclined opposed blade construction and designed to operate on a 45° arc. Blades shall be minimum 18 swg. (1.20mm thick) galvanised steel, single thickness construction with heavy duty gasket glued to the blades. The blades shall be screwed through the damper shaft to ensure that no slippage occurs. Blade shafts shall pivot on corrosion free bearings. Damper leakage shall not exceed 2% of the terminal rated air volume at 750 Pa inlet static pressure.
- 1.07 Entire terminal unit shall be factory assembled with (electronic) controls. All components including all controls except the room mounted temperature sensor and (field wiring) shall be factory installed and mounted with the unit.

- 1.08 Provide a (analogue electronic, digital electronic) flow control device that will limit the maximum and minimum airflow to that scheduled on the drawings. Airflow limits shall be factory set. Temperature sensor signal shall reset the flow control device to adjust primary airflow to match load requirements. Control of the terminal unit shall be pressure independent.
- 1.09 The terminal unit shall be capable of operation as described herein with inlet static pressure of 12 Pa at full cooling with no mixing of induced and primary air. (The sequence of operation should be described here, if not part of the temperature controls specifications). Mixing of the primary and secondary airstreams shall be such that no more than 0.5° C variation shall exist in the discharge airstream for each 11° C of difference between the primary and secondary airstreams.
- 1.10 Fan casings shall be constructed of heavy gauge coated steel. Fan wheel shall be forward curved centrifugal type, dynamically balanced and driven by direct drive motors. Motors shall be suitable for 240 volts single phase power. Motors shall have bearings capable of low rpm oiling, permanently oiled bearings and a built-in anti-backward rotation device. Fan assembly shall be mounted so as to isolate the casing from the motor and fan vibration at no less than four points. Isolation shall be supplied at the motor and at the fan mounting points.
- 1.11 An electronic motor speed controller sized and designed for the specific fan motor combination shall be provided to allow infinitely adjustable fan speed from the minimum voltage stop to the line voltage signal to the motor. A minimum voltage stop shall be employed to ensure that the fan cannot run in stall mode.
- 1.12 Units shall incorporate a single point electrical connection for the entire unit. All electrical components shall be CE marked. All electrical components shall be mounted in a control box.
- 1.13 All sound data shall be compiled in an independent laboratory

35SST Series Only

1.14 Unit shall be complete with an integral induction port attenuator - (Stealth), manufactured from 18swg. (1.2mm thick) galvanised mild steel sheet, folded into a rectangular casing and being integrated into the terminal unit side panel. The complete assembly of side panel and induction port attenuator shall be removable as one-piece. The induction port attenuator is internally lined with a 25mm thick acoustic/thermally insulating foam which is Melamine based, open cellular construction, having a non-woven black tissue facing, complying with class O fire rating. This material is adhered to all internal surfaces.

Suggested Specifications

Series Flow (Constant Volume) Fan Powered Terminals - Models 35S/SST & 37S/SST

Air Flow Controls

Analogue Electronic Controls (Pressure Independent)

- 2.01 The terminal unit manufacturer shall provide pressure independent analogue electronic controls which can be reset to modulate airflow between zero and the maximum catalogued capacity. Each terminal shall be equipped with labels showing unit size, location and minimum and maximum airflow settings. Controls shall be factory calibrated and set for the scheduled minimum and maximum flow rates.
- 2.02 Each unit shall be supplied with a Nailor Diamond flow sensor with four pick-up points on each side to ensure that controller accuracy shall be within ± 5% of set volume under various same size duct inlet conditions and inlet static variation of 12 1500 Pa. Flow measuring taps shall be furnished with each terminal.
- 2.03 The velocity controller shall have a constant 1.0°C reset span regardless of minimum and maximum airflow limits. It shall include an onboard flow-through transducer utilising twin platinum resistance temperature detectors and shall be capable of controlling a velocity setpoint from 0 16.5 m/s with an accuracy of 3%. The controller shall allow all airflow adjustments to be made from the matching mounted temperature sensor.
- 2.04 The terminal shall have a 24 VAC combination controller/actuator single assembly. The actuator shall be of a direct drive design and provide a minimum torque of 8 Nm. the actuator shall be of the floating reversible type and include a magnetic clutch, adjustable stops and a gear disengagement button.
- 2.05 The terminal manufacturer shall provide a Class 2, 24 Vac control transformer with internal current limiting protection. All controls shall be installed in an approved IP21 enclosure.

Digital (DDC) Controls (Pressure Independent) Factory Mounting Procedure

- 2.11 The terminals shall be equipped with pressure independent direct digital controls supplied by the controls contractor and mounted by the terminal unit manufacturer. The controls contractor shall, in addition to sending the controls to the terminal unit manufacturer, provide technical data sheets for all components to be mounted, including dimensional data, mounting hardware and method, as well as application specific wiring and piping diagrams for each terminal type as depicted on the schedules and mechanical drawings.
- 2.12 Controls shall be compatible with the pneumatic 'Diamond Flow' multi-point averaging flow sensor supplied by the terminal manufacturer. The sensor shall have four pick-up points on each side to ensure that controller accuracy shall be \pm 5% of set volume with any typical air turbulence in the duct and any typical flex inlet condition and with an inlet static variation of 12 1500 Pa. The sensor shall amplify the sensed velocity pressure and provide a minimum differential pressure of 7.5 Pa at 2.50 m/s inlet velocity. Flow measuring taps and flow curves shall be furnished with each terminal.
- 2.13 Controls shall be configured and field calibrated in the field by the controls contractor after terminal installation has been completed. Each terminal shall be supplied with a label showing unit type, model number, size and location.
- 2.14 The terminal manufacturer shall provide a 24 Vac control transformer with internal current limiting protection and disconnect switch. All controls shall be installed in an approved IP21 enclosure supplied and installed by the terminal manufacturer.
Advanced Air

355 SERIES FAN POWERED TERMINALS

Contents

Series Flow Constant Volume Fan Powered Terminal Units	Page No. F 11
Model 35S	
Performance Data	
Recommended Primary Airflow Ranges	F 12
Dimensions	F 13
Radiated Sound Power Levels	F 16
Discharge Sound Power Levels	F 17
Secondary Attenuators	F 18
Hot Water Supplementary Heater Batteries	F 20
Electric Supplementary Heater Batteries	F 22
Multiple Outlet Plenums	F 24
Fan Curves	F 25

Copyright© 2001 by Advanced Air (UK) Ltd. All rights reserved. The information contained in this publication is correct at the time of printing. Continuous product development means that from time to time product specifications and other information will change. The company reserve the right to modify or withdraw any of the products described without prior notice.

Series Flow Constant Volume Model 355 - Quiet Operation

Models:

355	Cooling Only
35SE	Electric Heat
35SW	Hot Water Heat

The **Model 35S** provides many standard design features and superior sound performance when compared with other basic model designs. The **35S** offers a compact and economical design well suited to the majority of applications.

Features:

- Unique 18 swg (1.2mm thick) galvanised steel channel space frame construction provides extreme rigidity and 18 swg casing components.
- 1.2mm thick galvanised steel inclined opposed blade primary air damper operating on a 45° arc.
- Unique perforated baffle on primary air discharge optimises mixing with induced air for rapid and effective temperature equalisation. The baffle also converts low frequency primary air damper generated sound into more readily attenuated higher frequencies.
- Pressure independent primary airflow control.
- Multi-point averaging flow sensor.
- Terminal may be field installed either way up, providing the additional flexibility of right or left field connections.
- Access panels on three sides of terminal for ease of maintenance and service to motor and fan from below or from the side of unit.
- Energy saving Nailor EPIC fan technology
- Motor fan assembly mounted on special 1.6 mm thick angles and isolated from casing with rubber

isolators.

- Removable door on controls enclosure
- Acoustic/thermal lining the terminal is internally lined with a 25mm thick acoustic/thermally insulating foam which is Melamine based open cellular construction, having a nonwoven black tissue facing and complying with class O fire rating. This material is adhered to all internal surfaces and inside box/channel sections.
- Available with electric or hot water supplementary heat.
- All controls are mounted on exterior of terminal providing ready access for field adjustment.
- Each terminal factory tested prior to shipment.
- Single point electrical connections.
- Discharge opening designed for flanged duct connection.

ASSESSED TO BS EN ISO 9002

Controls

- Analogue electronic controls. Factory supplied, mounted and calibrated.
- Digital controls. Factory mounting and wiring of DDC controls supplied by BMS Controls Manufacturers.

Options & Accessories

- · Induced air filter
- Fan disconnect switch (except units with electric heat, when disconnect is an electric heat option and includes fan).
- Melinex liner
- Solid metal inner liner.
- Perforated metal liner.
- Fan airflow switch for night shutdown (analogue electronic controls).
- Night setback fan/heat cycle (analogue).
- Fan mounted total air sensor.
- Induced air attenuator.
- Top entry induced air inlet

Recommended Primary Airflow Ranges for Fan Powered Terminal Units

The recommended airflow ranges below are for terminal units with pressure independent controls. For a given unit size, the minimum and the maximum flow settings must be within the range limits to ensure pressure independent operation, accuracy and repeatability. For these reasons, factory settings will not be made outside these ranges. A minimum setting of zero (shut-off) is also available.

When digital or other controls are factory mounted, but supplied by others, these values are guidelines only, based upon experience with the majority of controls currently available. Controls supplied by others for factory mounting are configured and calibrated in the field.

For a detailed analysis of fan powered terminal selection procedures with working examples, consult the engineering section of this catalogue

Air Volume Range

Unit Size	Inlet Spigot dia mm	Min I/s	Max I/s
3	150	0	236
3	200	0	330
3	250	0	520
5	250	0	520
5	315	0	750
5	355	0	900
7	400	0	1400
7	450	0	1700

Model 35 S - Series Flow - Size 3

Model 35 S Size 3 Terminal Dimensions

Terminal	O	A	B	D	F	G	K	M	L	W	H	X	Y	Wgt
Size	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
3-150	146	470	470	100	914	150	40	175	1238	400	400	460	460	70.0
3-200	196	470	470	100	914	150	40	175	1238	400	400	460	460	70.0
3-250	246	470	470	100	914	150	40	175	1238	400	400	460	460	70.0

'Q' Option - Induced Air Inlet Attenuator

This acoustically lined accessory is designed to deflect radiated sound upward and away from the ceiling, eliminating any direct sound path from the terminal to the occupied space. Radiated sound is diffused within the ceiling cavity and the decay that occurs as a result due to the ceiling plenum effect allows up to an additional 5 dB to be taken from radiated sound power levels. A minimum clearance of 150mm must be provided above the unit, so that induced airflow is not impeded.

Model 35 S - Series Flow - Size 5

Model 35 S Size 5 Terminal Dimensions

Terminal	O	A	B	D	F	G	K	M	L	W	H	X	Y	Wgt
Size	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
5-250	246	470	670	100	1050	150	40	175	1375	600	400	660	460	82.5
5-315	311	470	670	100	1050	150	40	175	1375	600	400	660	460	82.5
5-355	351	470	670	100	1050	150	40	175	1375	600	400	660	460	82.5

Model 35 S - Series Flow - Size 7

Model 35 S Size 7 Terminal Dimensions

Terminal	O	A	B	D	F	G	K	M	L	W	H	X	Y	Wgt
Size	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
7-400	396	470	1321	100	1050	150	40	175	1375	1200	400	1260	460	165.0
7-450	513x352	470	1321	100	1050	150	40	175	1375	1200	400	1260	460	165.0

Model 355 • Series Flow • Acoustic Data

Radiated NC Levels

Terminal Size	Air Flow I/s	Min. inlet ∆Ps Pa	Fan Only	NC Levels Minimum ∆Ps	@ Inlet Pr 125 Pa.	ressure (DI 250Pa.	Ps) shown 375 Pa.	500Pa
3-200	330	12	21	21	24	31	35	38
3-200	283	12	21	21	23	29	33	36
3-200	212	12	-	-	21	27	32	33
3-250	519	12	27	27	29	33	36	40
3-250	425	12	25	24	26	32	35	38
3-250	330	12	-	-	22	28	34	37
3-250	212	12	-	-	-	24	32	34
5-315	755	12	36	34	35	36	40	43
5-315	661	12	34	30	33	35	40	42
5-315	566	12	31	28	28	34	34	41
5-315	495	12	28	24	26	33	36	40
5-400	909	12	38	36	38	39	42	45
5-400	802	12	34	31	35	37	41	43
5-400	661	12	31	30	31	35	40	42
5-400	496	12	28	21	26	34	36	41
7-400	1440	45	45	42	44	44	49	52
7-400	1274	35	42	39	41	42	45	47
7-400	1080	25	40	36	35	39	42	45
7-400	944	17	36	32	34	37	40	44
7-450	1723	12	46	45	46	47	49	51
7-450	1534	12	43	41	44	45	46	48
7-450	1227	12	40	38	40	41	42	45
7-450	944	12	36	30	34	36	38	40

Performance Notes

- 1. Application data is based on procedures and factors found in the ARI Standard 885-98; 'Procedure for estimating occupied space sound levels in the application of air terminal units and outlets'.
- 2. Min. inlet ΔPs is the minimum operating pressure of the primary air damper.
- 3. Dash (-) in space denotes an NC level of less than 20.
- 4. Discharge (external) static pressure is 63 Pa in all cases.

Performance Data Series Flow (Constant Volume) Radiated Sound Power Levels

Terminal	Air	Min.		F	an and100% Primary Air- Sound Power Octave Bands @ Inlet Pressu	ure Shown
Size	Flow	inlet	Fan Only	Min. ∆Ps OBCF -Hz	125 Pa. △Ps OBCF -Hz. 250Pa △Ps OBCF -Hz. 375Pa △Ps OBCF -Hz. 5	500Pa ∆Ps OBCF -Hz.
	l/s	∆Ps Pa	125 250 500 1k 2k 4k	125 250 500 1k 2k 4k	125 250 500 1k 2k 4k 125 250 500 1k 2k 4k 125 250 500 1k 2k 4k 1	125 250 500 1k 2k 4k
	330	12	62 52 52 46 43 39	63 53 52 46 44 39	65 56 54 52 52 50 66 59 57 55 58 59 68 61 60 58 61 64 0	69 65 62 60 64 67
3-200	283	12	61 51 51 44 42 37	61 52 51 45 41 37	63 55 53 50 52 50 65 58 56 54 58 58 66 61 59 57 61 63	67 63 60 59 63 65
	212	12	55 43 49 40 37 31	57 48 48 40 36 30	59 51 50 48 49 48 60 54 53 51 55 54 63 57 56 56 60 60	63 59 58 58 61 61
	519	12	68 59 57 52 51 47	67 60 57 52 51 47	69 62 59 56 57 55 71 65 61 58 61 61 72 65 64 61 64 65	68 68 65 63 66 68
3-250	425	12	66 55 54 49 46 42	64 56 54 48 46 42	66 58 56 53 54 52 68 60 59 56 60 60 70 64 62 60 63 64 0	68 66 63 61 65 67
	330	12	60 52 51 44 41 36	58 51 50 43 40 36	61 55 53 50 51 48 64 59 56 54 57 57 65 60 59 57 61 62	66 62 60 59 64 66
	212	12	54 48 48 39 35 28	55 47 48 39 34 27	56 50 49 46 48 45 58 55 53 51 56 55 59 56 55 54 59 60	62 58 57 59 61 62
	755	12	75 66 58 53 51 48	73 65 58 52 50 48	74 69 64 59 62 64 74 69 64 59 62 64 75 70 67 63 64 68	76 73 69 65 66 71
5-315	661	12	73 62 55 50 47 44	70 61 55 48 46 44	72 65 60 54 56 55 73 67 63 58 61 63 73 70 66 61 64 68	74 72 68 64 65 70
	566	12	71 60 53 47 45 41	68 58 52 46 43 40	67 62 57 52 55 54 70 65 61 58 60 62 71 67 64 60 63 66	72 70 66 62 64 69
	495	12	68 56 50 44 41 37	65 55 50 43 39 36	66 60 55 50 54 53 67 63 59 56 60 61 70 66 62 58 62 65	71 69 65 61 64 68
	909	12	76 71 61 57 56 53	75 69 62 58 55 53	76 71 64 59 61 61 77 72 66 61 64 66 77 73 67 63 66 70	78 75 69 65 67 73
5-355	802	12	73 67 59 54 52 50	72 65 59 53 51 49	74 68 61 56 59 59 75 70 64 59 63 66 75 71 65 61 64 69	76 72 67 63 66 71
	661	12	71 64 56 50 48 46	69 61 55 49 46 44	71 65 58 54 57 57 72 67 61 57 62 64 73 67 63 59 64 68	73 70 64 61 65 70
	496	12	68 57 50 44 41 37	63 55 50 43 40 37	66 59 53 50 55 53 68 62 57 54 60 62 69 64 59 56 62 65 6	69 66 62 59 64 69
	1440	12	78 69 61 56 54 51	76 68 61 55 53 51	77 70 66 59 61 60 77 72 67 62 65 67 81 76 73 69 70 74	82 79 75 71 72 77
7-400	1274	12	76 65 58 53 50 47	73 64 58 51 49 47	75 68 63 57 59 58 76 70 66 61 64 66 78 73 69 64 67 71	77 75 71 67 68 73
	1080	12	74 63 56 50 48 44	71 61 55 49 46 43	70 65 60 55 58 57 73 68 64 61 63 65 74 70 67 63 66 69	75 73 69 65 67 72
	948	12	71 59 53 47 44 40	68 58 53 46 42 39	69 63 58 53 57 56 70 66 62 59 63 64 73 69 65 61 65 68	74 72 68 64 67 71
	1723	12	79 74 64 60 59 56	78 72 65 61 58 56	79 74 67 62 64 64 80 75 69 64 67 69 80 76 70 66 69 73	81 78 72 68 70 76
7-450	1534	12	76 70 62 57 55 53	75 68 52 56 54 52	77 71 64 59 62 62 78 73 67 62 66 69 78 74 68 64 67 72	79 75 70 65 69 74
	1227	12	74 67 59 53 51 49	72 64 58 52 49 47	74 68 61 57 60 60 75 70 64 60 65 67 76 70 66 62 68 71	76 73 67 64 68 73
	944	12	71 60 53 47 44 40	66 58 53 46 43 40	69 62 56 53 58 56 71 65 60 57 63 64 72 67 62 59 65 68	72 69 65 62 67 72

1. Discharge (external) static pressure is 63 Pa in all cases. It is the difference (ΔPs) in static pressure from terminal discharge to the room.

2. Radiated sound power is the breakout noise transmitted through the unit casing walls and induction port.

3. Sound power levels are in decibels, dB re 10^{12} watts.

4. All sound data listed by octave bands is raw data without any corrections for room absorption or duct attenuation.

5. Min. inlet ΔPs is the minimum operating pressure of the primary air damper section.

6. Data derived from independent tests conducted in accordance with ANSI/ASHRAE Std. 130-1996 and ARI Standard 880-98.

Model 355 • Series Flow • Acoustic Data

Discharge NC Levels

Terminal Size	Air Flow I/s	Min. inlet ∆Ps Pa	Fan Only	NC Levels Minimum DPs	s @ Inlet Pi 125 Pa.	ressure (D 250Pa.	Ps) shown 375 Pa.	500Pa.
3-200	330	12	-	-	-	-	-	-
3-200	283	12	-	-	-	-	-	-
3-200	212	12	-	-	-	-	-	-
3-250	519	12	-	-	-	-	-	-
3-250	425	12	-	-	-	-	-	-
3-250	330	12	-	-	-	-	-	-
3-250	212	12	-	-	-	-	-	-
5-315	755	12	-	-	-	-	-	-
5-315	661	12	-	-	-	-	-	-
5-315	566	12	-	-	-	-	-	-
5-315	495	12	-	-	-	-	-	-
5-355	909	12	22	22	23	24	24	24
5-355	802	12	20	-	20	20	20	20
5-355	661	12	-	-	-	-	-	-
5-355	496	12	-	-	-	-	-	-
7-400	1440	45	31	29	31	33	31	32
7-400	1274	35	28	27	28	28	29	29
7-400	1080	25	25	25	25	25	25	26
7-400	944	17	20	20	20	20	20	22
7-450	1723	12	36	36	36	37	37	33
7-450	1534	12	34	32	34	34	34	34
7-450	1227	12	29	27	28	28	28	29
7-450	944	12	20	20	21	20	20	22

Performance Notes

- 1. Application data is based on procedures and factors found in the ARI Standard 885-98; 'Procedure for estimating occupied space sound levels in the application of air terminal units and outlets'.
- 2. Min. inlet ΔPs is the minimum operating pressure of the primary air damper.
- 3. Dash (-) in space denotes an NC level of less than 20.
- 4. Discharge (external) static pressure is 63 Pa in all cases.

Performance Data Series Flow (Constant Volume) Discharge Sound Power Levels

Terminal	Air	Min.		F	an and100% Primary Air- Sound Power Octave Bands @ Inlet Pressure Shown
Size	Flow	inlet	Fan Only	Min. △Ps OBCF -Hz.	125 Pa. △Ps OBCF -Hz. 250Pa △Ps OBCF -Hz. 375Pa △Ps OBCF -Hz. 500Pa △Ps OBCF -Hz.
	l/s	$\Delta \mathbf{Ps} \ \mathbf{Pa}$	125 250 500 1k 2k 4k	125 250 500 1k 2k 4k	125 250 500 1k 2k 4k
	330	12	56 56 59 56 52 48	57 56 59 55 51 48	58 58 60 56 52 48 59 59 60 56 52 48 61 61 60 56 52 48 61 61 61 58 52 48
3-200	283	12	56 55 58 55 51 46	56 55 58 54 50 45	57 57 59 55 51 46 58 58 59 55 51 46 59 58 59 55 51 46 59 58 59 55 51 46 59 60 59 55 49 46
	212	12	55 52 54 50 46 38	55 52 54 50 45 37	56 53 55 50 45 38 57 54 55 50 45 38 57 55 55 49 44 38 57 55 55 49 44 38 57 55 55 49 44 38 57 55 55 49 44 38 57 55 55 49 44 38 57 55 55 49 44 38 57 55 55 49 44 38 36<
	519	12	62 64 68 65 62 61	61 64 68 64 61 60	65 67 68 64 63 61 66 67 69 66 64 62 67 69 67 64 62 68 68 69 67 64 62
3-250	425	12	60 61 64 61 58 56	59 61 63 60 57 55	61 63 65 62 59 56 63 64 65 63 60 57 64 64 65 63 60 58 64 65 65 63 60 58
	330	12	57 58 59 55 5 48	57 58 58 55 51 48	59 59 60 57 53 49 60 60 60 57 54 50 60 59 60 57 53 50 61 61 60 57 53 50
	212	12	57 56 54 50 46 38	56 56 54 50 45 38	57 56 55 51 46 39 58 57 55 50 46 39 58 57 55 50 46 39 58 57 55 50 46 39 59 57 55 50 45 40
	755	12	67 68 69 69 66 65	67 67 68 67 64 63	69 69 69 68 65 65 70 70 69 68 65 65 70 70 69 68 65 65 71 70 69 68 64 64
5-315	661	12	66 66 67 66 63 62	64 64 65 64 61 61	67 66 66 64 62 62 68 67 66 65 62 62 68 67 66 65 62 62 69 67 67 65 62 61
	566	12	62 62 63 62 59 58	60 61 62 60 57 57	63 63 62 61 58 58 64 63 63 61 58 57 65 62 63 61 57 57 66 65 63 61 57 57
	495	12	60 59 59 58 55 53	58 58 59 57 53 53	60 59 59 58 54 53 62 60 59 57 54 53 63 61 60 57 54 53 64 62 60 57 54 53
	909	12	73 74 73 74 71 70	73 74 73 73 70 70	73 74 74 73 70 70 74 75 74 73 71 70 74 75 74 73 71 70 74 75 74 73 71 70 75 75 74 73 70 70
5-355	802	12	71 71 70 70 67 67	69 69 70 69 66 66	71 71 71 70 67 66 72 71 71 70 67 66 72 71 70 67 66 72 71 70 69 66 66 72 71 70 69 66 66
	661	12	67 67 67 67 63 63	64 64 66 62 61 61	67 67 66 65 62 62 68 66 66 65 62 62 68 65 66 65 61 61 68 67 66 65 61 62
	496	12	60 60 61 60 56 54	59 59 59 58 54 53	60 60 58 55 54 61 60 58 54 63 61 60 58 54 54 64 62 60 58 54 54
	1440	12	70 71 72 72 69 68	70 70 71 70 67 68	72 72 72 71 68 68 73 73 72 71 68 68 74 72 72 71 68 68 74 73 72 71 67 67
7-400	1274	12	69 69 70 69 66 65	67 67 68 67 64 64	70 69 69 67 65 65 71 70 69 68 65 65 71 70 69 68 65 65 61 70 69 67 64 64 72 70 70 68 65 64
	1080	12	65 65 66 65 62 61	63 64 65 63 60 60	66 66 65 64 61 61 67 66 66 64 61 60 67 66 66 64 61 60 69 68 66 64 60 60
	948	12	63 62 62 61 58 56	61 61 62 60 56 56	63 62 62 61 57 56 65 63 62 60 57 56 65 63 62 60 57 56 65 63 62 60 57 56
	1723	12	76 77 76 77 74 73	76 77 76 76 73 73	76 77 77 76 73 73 77 78 77 76 74 73 77 78 77 76 74 73 77 78 77 76 74 73 78 78 77 76 73 73
7-450	1534	12	74 74 73 73 70 70	72 72 73 72 69 69	74 74 74 73 70 69 75 74 74 73 70 69 75 74 74 73 70 69 75 74 74 7 70 69 75 74 73 72 69 69
	1227	12	70 70 70 70 66 66	67 67 69 65 64 64	70 70 69 68 65 65 71 69 69 68 65 65 71 69 69 68 65 65 71 70 69 68 64 65
	944	12	63 63 64 63 59 57	62 62 62 61 57 56	63 63 63 61 58 57 64 63 63 61 57 57 64 63 63 61 57 57 64 63 63 61 57 57 67 65 63 61 58 57

1. Discharge (external) static pressure is 63 Pa in all cases. It is the difference (ΔPs) in static pressure from terminal discharge to the room.

2. Radiated sound power is the breakout noise transmitted through the unit casing walls and induction port.

3. Sound power levels are in decibels, dB re 10^{-12} watts.

4. All sound data listed by octave bands is raw data without any corrections for room absorption or duct attenuation.

5. Min. inlet ΔPs is the minimum operating pressure of the primary air damper section.

6. Data derived from independent tests conducted in accordance with ANSI/ASHRAE Std. 130-1996 and ARI Standard 880-98.

Secondary Attenuators-Dimensions Model 35SFB

Terminal	W	Н	X	Y	L	Wgt
Size	mm	mm	mm	mm	mm	kg
3-150	400	400	460	460	600	21.00
3-150	400	400	460	460	900	28.00
3-150	400	400	460	460	1200	35.00
3-200	400	400	460	460	600	21.00
3-200	400	400	460	460	900	28.00
3-200	400	400	460	460	1200	35.00
3-250	400	400	460	460	600	21.00
3-250	400	400	460	460	900	28.00
3-250	400	400	460	460	1200	35.00
5-250	600	400	660	460	600	28.00
5-250	600	400	660	460	900	36.00
5-250	600	400	660	460	1200	44.00
5-315	600	400	660	460	600	28.00
5-315	600	400	660	460	900	36.00
5-315	600	400	660	460	1200	44.00
5-355	600	400	660	460	600	28.00
5-355	600	400	660	460	900	36.00
5-355	600	400	660	460	1200	44.00
7-400	1200	400	1260	460	600	45.00
7-400	1200	400	1260	460	900	59.00
7-400	1200	400	1260	460	1200	73.00
7-450	1200	400	1260	460	600	45.00
7-450	1200	400	1260	460	900	59.00
7-450	1200	400	1260	460	1200	73.00

Secondary Attenuators

All Nailor terminal units are available with attached secondary attenuators

Casing:

Manufactured from 18 swg. (1.2mm thick) folded galvanised mild steel sheet, formed into a rectangular casing, all longitudinal casing joints are mechanically sealed.

Flanges:

Intake and discharges incorporate rectangular flanges, which are mechanically fixed to the main body of the attenuator.

Splitters:

Arranged within the casing are vertical attenuating splitter sections manufactured from 21 swg. (0.8mm thick) galvanised mild steel, fixed to the casing by rivets. Splitters are fitted at inlet and discharge with aerodynamically shaped bullnose fairings. Splitters are fitted with 22 swg. (0.7mm thick) expanded or perforated metal facings. Horizontal splitters are also available if required.

Acoustic infill:

Splitters and side linings are filled with an inert, non combustible, non hygroscopic, vermin and rot proof mineral fibre slab which will not support bacterial growth. Usually faced with a glass fibre tissue (FB), however hermetically sealed Melinex membrane bags (FG) are available wherever indoor air quality conditions demand.

Acoustic Performance Data - Secondary Attenuator Static Insertion Loss dB Model 355 FB

Terminal	Air	Air	Press.	width	height	length						
size	vol.	vol.	drop						O.B.C.	FHz		
	l/s.	m³/h	Pa.	mm.	mm.	mm.	125	250	500	1k	2k	4k
3-150	24	324	neg.	400	400	600	6	8	15	18	13	9
3-150	236	1872	15	400	400	600	6	8	15	18	13	9
3-150	24	324	neg.	400	400	900	9	12	20	25	19	12
3-150	236	1872	15	400	400	900	9	12	20	25	19	12
3-150	24	324	neø.	400	400	1200	11	16	30	36	25	15
3-150	236	1872	20	400	400	1200	11	16	30	36	25	15
3-200	30	374	neo	400	400	600	6	8	15	18	13	9
3-200	330	1872	15	400	400	600	6	8	15	18	13	9
3-200	30	324	ned	400	400	900	ĝ	12	20	25	19	12
3-200	330	1872	15	400	400	900	9	12	20	25	19	12
3-200	30	374	ned	400	400	1200	11	16	30	36	25	15
3-200	330	1872	20	400	400	1200	11	16	30	36	25	15
2.250		224		100	400				45	10	12	
3-250	50	324 1072	neg.	400	400	600	0	ð	15	10 10	13	9
3-250	520	18/2	15	400	400	000	0	0 12	15	18	13	9
3-250	50	324	neg.	400	400	900	9	12	20	25	19	12
3-250	520	18/2	15	400	400	900	9	12	20	25	19	12
3-250	50	324	neg.	400	400	1200	11	16	30	36	25	15
3-250	520	1872	20	400	400	1200	11	16	30	36	25	15
5-250	60	216	neg.	600	400	600	1	3	5	6	5	2
5-250	640	2304	60	600	400	600	1	3	5	6	5	2
5-250	60	216	neo.	600	400	900	2	5	8	10	7	3
5-250	640	2304	60	600	400	900	2	5	8	10	7	3
5-250	60	216	ned	600	400	1200	3	6	10	13	, Q	4
5-250	640	2304	65	600	400	1200	3	6	10	13	9	4
5-315	75	270	ned	600	400	600	1	3	5	6	5	2
5-315	750	2700	60	600	400	600	1	3	5	6	5	2
5-315	75	2700	ned	600	400	900	2	5	8	10	7	2
5-315	750	270	60	600	400	000	2	5	8	10	7	3
5-315	75	2700	ned	600	400	1200	2	6	10	10	0	J 1
5-315	750	270	65	600	400	1200	3	6	10	13	9	4
5-355	105	378	neg.	600	400	600	1	3	5	6	5	2
5-355	900	3240	60	600	400	600	1	3	5	6	5	2
5-355	105	378	neg.	600	400	900	2	5	8	10	7	3
5-355	900	3240	60	600	400	900	2	5	8	10	7	3
5-355	105	378	neg.	600	400	1200	3	6	10	13	9	4
5-355	900	3240	65	600	400	1200	3	6	10	13	9	4
7-400	130	468	1	1200	400	600	9	14	19	32	31	23
7-400	1400	5040	37	1200	400	600	9	14	19	32	31	23
7-400	130	468	1	1200	400	900	12	18	25	42	41	29
7-400	1400	5040	43	1200	400	900	12	18	25	42	41	29
7-400	130	468	1	1200	400	1200	14	22	31	50	50	35
7-400	1400	5040	45	1200	400	1200	14	22	31	50	50	35
7-450	150	540	3	1200	400	600	9	14	19	32	31	23
7-450	1700	6120	40	1200	400	600	9	14	19	32	31	23
7-450	150	540	3	1200	400	900	12	18	25	42	41	29
7-450	1700	6120	43	1200	400	900	12	18	25	42	41	29
7-450	150	540	3	1200	400	1200	14	22	31	50	50	35
7-450	1700	6120	47	1200	400	1200	14	22	31	50	50	35

Low Pressure Hot Water Supplementary Heater Batteries - Dimensions -Model 35SW

Terminal	W	Н	L	X	Y	Wgt
Size	mm	mm	mm	mm	mm	kg
3-150	400	400	200	460	460	15.00
3-200	400	400	200	460	460	15.00
3-250	400	400	200	460	460	15.00
5-250	600	400	200	660	460	18.00
5-315	600	400	200	660	460	18.00
5-355	600	400	200	660	460	18.00
7-400	1200	400	200	1260	460	25.00
7-450	1200	400	200	1260	460	25.00

All terminal units are available with factory installed low pressure hot water re-heat/supplementary heater batteries.

Casing:

Manufactured from 18 swg. (1.2mm thick) folded galvanised mild steel sheet, formed into a rectangular casing, all casing joints are mechanically sealed.

Inlets and outlets incorporate rectangular flanges, which are mechanically fixed to the main body of the casing.

Water Tubes:

Manufactured from 10mm diam. copper tube to BS 1278 table Y.

Pipe Connections:

Plain male ends suitable for solder jointing.

Heat Exchange Fins:

Manufactured from 0.13mm thick rectangular aluminium plates, mechanically bonded to the copper tubes. Fins are spaced at 2.5mm intervals.

All low pressure hot water supplementary heater batteries incorporate an air vent and drain point.

Pressure Testing:

All low pressure hot water supplementary heater batteries are air pressure tested under water to a pressure of 3,000 kPa.

LPHW Supplementary Heater Battery Performance 82°C Flow, 71°C Return, 10 fpi Model 35SW

Terminal	Air	Air	Dimen	sions	Face	Air	1 Row	Air	Water	Water	Air	2 Row	Air	Water	Water	Air
Size	Vol.	Vol.	Width	Height	Vel	On	Duty	Off	Pd		Pd	Duty	Off	Pd		Pd
	l/s	m³/h	mm	mm	m/s	C	kW	С	КРа	kg/s	Ра	kW	С	kPa	kg/s	Ра
3-150	95	342	400	400	0.6	13	3.2	41	0.9	69.5	2.4	4.92	56	1.2	106.5	4
3-150	110	396	400	400	0.7	13	3.7	41	1.1	80.5	3.1	5.74	56	1.6	124.2	5
3-150	150	540	400	400	0.9	13	5.0	41	2.0	108.9	5.2	7.86	57	3.0	170.1	9
3-150	185	666	400	400	1.2	13	6.0	40	2.7	129.0	7.4	9.4	55	4.2	203.5	13
3-200	210	756	400	400	1.3	13	6.5	39	3.2	140.5	9.2	10.35	54	5.0	224.0	16
3-200	283	1019	400	400	1.8	13	8.0	37	4.8	174.0	15	13.06	51	7.8	282.7	27
3-200	330	1188	400	400	2.1	13	8.9	35	5.8	193.3	20	14.66	50	9.7	203.5	35
3-250	210	756	400	400	1.3	13	6.5	39	3.2	140.5	9.2	10.35	54	5.0	224.0	16
3-250	330	1188	400	400	2.1	13	8.9	35	5.8	193.3	20	14.66	50	9.7	317.3	35
3-250	425	1530	400	400	2.7	13	10.6	34	8.0	229.7	30	17.70	48	14.0	383.1	53
3-250	520	1872	400	400	3.2	13	12.4	33	10.7	267.7	43	20.80	46	19.0	450.2	75
5-250	210	756	600	400	0.9	13	7.3	42	4.5	157.6	4.6	11.34	58	6.3	245.5	8
5-250	330	1188	600	400	1.4	13	10.4	39	8.7	224.9	9.9	16.57	55	12.9	358.7	17
5-250	425	1530	600	400	1.8	13	11.7	36	5.9	252.4	16	19.01	50	13.4	411.5	27
5-250	520	1872	600	400	2.2	13	13.4	34	7.7	289.4	22	22.08	48	17.8	477.9	37
5-315	495	1782	600	400	2.1	13	13.0	35	7.2	280.1	20	21.30	49	16.6	461.0	32
5-315	565	2034	600	400	2.3	13	14.1	39	8.5	306.3	25	23.45	42	20.0	507.6	43
5-315	660	2376	600	400	2.7	13	15.7	33	6.4	339.8	32	26.30	46	24.9	569.3	57
5-315	750	2700	600	400	3.1	13	17.4	32	12.6	376.4	40	29.25	45	30.5	633.1	70
5-355	495	1782	600	400	2.1	13	13.0	35	7.2	280.1	20	21.30	49	16.6	461.0	32
5-355	660	2376	600	400	2.7	13	15.7	33	6.4	339.8	32	26.30	46	24.9	569.3	57
5-355	800	2880	600	400	3.3	13	18.2	32	13.7	393.9	45	30.72	45	33.5	664.9	78
5-355	910	3276	600	400	3.8	13	19.9	3.1	16.2	429.9	56	33.75	44	40.1	730.5	98
7-400	948	3413	1200	400	2.0	13	26.9	37	10.8	583.3	18	36.93	45	14.8	799.4	32
7-400	1080	3888	1200	400	2.2	13	29.5	36	12.8	638.5	23	40.00	44	17.7	865.8	40
7-400	1274	4586	1200	400	2.6	13	33.0	35	15.9	714.3	30	45.00	42	22.0	974.0	53
7-400	1440	5184	1200	400	3.0	13	36.0	34	18.5	779.2	37	49.00	41	26.0	1060.6	65
7-450	944	3398	1200	400	2.0	13	27.0	37	10.8	584.4	18	36.00	45	19.7	779.2	32
7-450	1227	4417	1200	400	2.6	13	32.0	35	15.0	692.6	28	44.00	43	21.0	952.4	50
7-450	1534	5522	1200	400	3.2	13	38.0	34	21.0	822.5	42	52.00	41	29.0	1125.5	73
7-450	1723	6023	1200	400	3.6	13	41.5	33	24.0	898.3	50	57.00	40	34.0	1233.8	89

Electric Supplementary Heater Batteries- Dimensions Model 35SE

All Nailor terminal units are available with factory installed electric supplementary heater batteries.

Casing:

Manufactured from 18 swg. (1.2mm thick) folded galvanised mild steel sheet, formed into a rectangular casing, all casing joints are mechanically sealed.

Intake and discharges incorporate rectangular flanges, which are mechanically fixed to the main body of the casing.

Electric Elements:

Manufactured from stainless steel tubing with copper resistance wire and magnesium oxide insulation.

High Temperature Cut-Out:

All electric supplementary heater batteries incorporate automatic and manual high temperature cut-out safety devices, which disconnect the electrical power in the event that the air temperature exceeds a pre set maximum.

Pressure Switch:

All electric supplementary heater batteries incorporate a positive pressure switch which does not permit the heating elements to be energised unless there is positive air pressure (indicating airflow) available.

Electric Supplementary Heater Battery Performance

Model 35SE

	-							
kW 54.0	n/a n/a n/a n/a	n/a n/a n/a	n/a n/a n/a n/a	n/a n/a n/a n/a	n/a n/a n/a n/a	n/a n/a n/a n/a	n/a n/a n/a n/a	n/a n/a n/a
kW 52.0	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a √
kW 50.0	n/a n/a n/a n/a	n/a n/a n/a	n/a n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a n/a	n/a n/a n/a	n/a n/a √
48.0	n/a n/a n/a n/a	n/a n/a n/a	n/a n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a V
46.0	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a √
4.0 ,	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a √	n/a
kW 12.0 4	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a √	n/a √
0.0	ה/ר ה/ר ה/ר	ה/ר ה/ר ה/ר	ב/ר ב/ר ב/ר	ב/ר ב/ר ב/ר	ב/ר ב/ר ב/ר	ב/ר ב/ר ב/ר	a/r a/r	a/r 7
KW 8.0 4	a/د a/د a/د a/د	ה/ר ה/ר ו ה/ר	e/L e/L e/L	е/г в/г в/г в/г	е/г в/г в/г в/г	= = \L	a/2/2	で い く ろ
6.0 3	a/د a/د a/د a/د	е/г е/г е/г	e/L e/L e/L	е/г в/г в/г в/г	е/г в/г в/г в/г	a/r a/r a/r	- 1/a - 1/a	- 2/a - 2/2
4.0 3	1 a/r 1 a/r 1 a/r 1 a/r	1 e/r 1 e/r 1 e/r	1 8/1 1 8/1 1 8/1 1 8/1	1/a 1/a/1 1/a/1 1/a/1	1 a/r 1 a/r 1 a/r 1 a/r	1/a 1/ 1/a 1/ 1/a 1/ 1/a 1/		
2.0 3	1/a 1/ 1/a 1/ 1/a 1/ 1/a 1/	1/a 1/ 1/a 1/ 1/a 1/	1/a 1/ 1/a 1/ 1/a 1/ 1/a 1/	1/a 1/ 1/a 1/ 1/a 1/ 1/a 1/	1/a 1/a 1/a 1/a	1/a 1/a 1/a 1/a	- ~ ~ ~	
0.0 3	1/a 1 1/a 1 1/a 1 1/a 1	1/a 1 1/a 1 1/a 1	1/a 1 1/a 1 1/a 1 1/a 1	1/a 1 1/a 1 1/a 1 1/a 1	1/a 1 1/a 1 1/a 1 1/a 1	1/a 1 1/a 1 1/a 1	- ~~~~	- ~~~~
8.0 3	//a r //a r //a r	//a r //a r //a r	//a r //a r //a r	//a r //a r //a r	√a r √a r √ r	√a r √a r	5555	5555
W 1 6.0 2	/a 1 /a 1 /a 1	/a r /a r	/a _ /a _ /a _	/a _ /a _ /a _	√/a ⊓ √/a ⊓	√a r ∕a r	~~~~~	5555
4.0 H	/a 1 /a 1 /a 1	/a _ /a _	/a _ /a _ /a _	/a _ /a _ /a _	√a _ √a _	2 2 2 2 2	~~~~~	~~ <u>~</u> ~
W k 2.0 2	/a r /a n /a n	/a 1 /a 1	/a 1 /a 1 /a 1	/a 1 /a 1 /a 1	/a _ /a	a a a a	<u> </u>	~~~~
W k 0.0 2	/a 1 /a 1 /a 1	/a r /a r	/a _ /a _ /a _	/a _ /a _ /a _	~~ <u>~</u> a	8	~~~~~	~~~ <u>~</u>
W k 8.0 2(/a n /a n /a n /a n	/a n /a n /a n	/a n /a n /a n /a n	/a 1 /a 1 /a 1 /a 1	<u> </u>	~~~~	<u> </u>	~~~~
× 2 × 2	/a n /a n /a n /a n	/a n /a n /a n	/a n /a n /a n	/a n /a n /a n		u		
× 1	/a n /a n /a n /a n	/a n /a n / n	/a n /a n /a n	/a n /a n / a n				
× 10.	/a n /a n /a n /a n	/a n /a n	/a n /a n /a n	/a n /a n /a n				
+0 15 K	/a 1, /a 1, /a 1, /a 1,	/a n /a n	/a n /a n /a n	/a/ /a/ /a/				
*0 Out 7 k	/a n /a n /a n /a n	/a n /a n	/a n /a n	/a n /a n	~~~~	~~~~	~~~~	
2 K	, a n a n a n	л Тал Тал	ت ت ب ت م ب ب	, , , , , , , , , , , , , , , , , , ,				
.0 12 K	 	ت ت ۲	 	 				
× 5	 	ت ت ۲ ی م م		227 8222				
×0 ×0		<u>د</u> د،	8	8				
× 0	, a 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ت ، ۲ ۲						
× ∞ × ∞	, a n a n a n	ت <u>ت</u>						
2 N N	, a n a n a n	ت <u>ت</u>						
3 °5 ∧ K	, a n a n a n							
× 9 × 9	/a 1/ /a 1/ /a 1/ /a 1/							
5 K	/a n /a n /a n	~ ~ ~ ~						
× 0.	/a n /a n /a n				~~~~			
ن. ک ت ج	/a n /a n							
≶ ó ★ 4	/a n /a n							
ن ک 7 4				~~~~				
× 0.	5555	555	5555	5555	~~~~	5555	5555	5555
3 E	5555	555	5555	5555	5555	5555	5555	5555
× 0	5555	555	5555	5555	5555	5555	5555	5555
5. K	5555	555	5555	5555	5555	5555	5555	5555
\$ 0. * 1	5555	555	5555	5555	5555	5555	5555	5555
5 č	5555	555	5555	5555	5555	5555	5555	5555
sht k ght k								
n Hei	400 400 400 400	400 400 400	400 400 400	400 400 400	400 400 400	400 400 400 400	400 400 400	400 400 400 400
Dime	400 400 400 400	400 400	400 400 400	009	009	009 009	1200 1200 1200 1200	1200 1200 1200 1200
Air Pd. Pa.	5 9 11	13 15	13 19 22	8 13 18	17 19 23	17 19 32 32	17 3 18 5 19 22	3 17 19 30
Air Vol. m³/h	342 396 540 666	756 1019 1188	756 1188 1530 1872	756 1188 1530 1872	1782 2034 2376 2376 2700	1782 2376 2880 3276	3413 3885 4586 5184	3398 4417 5522 6023
Air Vol.	95 110 150 185	210 283 330	210 330 425 520	210 330 425 520	495 565 660 750	495 660 800 910	948 1080 1274 1440	944 1227 1534 1723
minal ze	150 150 150 150	200 200 200	250 250 250 250	250 250 250 250	315 315 315 315	355 355 355 355	400 400 400	450 450 450 450
Siz	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		ᇦᇦᇦ┍	ᇦᇦᇦ┍		

Maximum recommended Leaving Air Temperature - 39°C

High temperature cut-out settings:

70°C 120°C

Automatic -Manual -

F 23

Model 35GB - Insulation faced with non woven tissue as standard. **Model 35GG** - Insulation covered with hermetically sealed Melinex membrane bags for indoor air quality applications.

Terminal Size	W	H	X	Y	Spigot	Wgt							
5120					mm	чіу	mm	Чч	mm	419	mm	Чч	кġ
3-150	400	400	460	460	150	A-K	200	A-K	250	A-K	315	A-K	15.0
3-200	400	400	460	460	150	A-K	200	A-K	250	A-K	315	A-K	15.0
3-250	400	400	460	460	150	A-K	200	A-K	250	A-K	315	A-K	15.0
5-250	600	400	660	460	150	A-L	200	A-L	250	A-K	315	A-K	25.5
5-315	600	400	660	460	150	A-L	200	A-L	250	A-K	315	A-K	25.5
5-355	600	400	660	460	150	A-L	200	A-L	250	A-K	315	A-K	25.5
7-400	1200	400	1260	460	150	A-N	200	A-N	250	A-M	315	A-L	45.0
7-450	1200	400	1260	460	150	A-N	200	A-N	250	A-M	315	A-L	45.0

Airflow I/s

Series Flow ECM Brushless DC Motor Performance Data Model 35S

Fan Curves - Airflow vs. Downstream Static Pressure

Unit Size 3 (1/2 H.P.)

Unit Size 5 (3/4 H.P.)

Discharge Static Pressure N/m²

Unit Size 7 (2 @ 3/4 H.P.)

Notes

- The fan curves for the ECM motor are unlike those for traditional induction motors. The ECM motor is constant volume and airflow does not vary with changing static pressure conditions. The motor compensates for any changes in external static pressure or varying internal conditions such as filter loading.
- Airflow can be set to operate on a horizontal performance line at any point within the shaded area using the solid state volume controller provided.
- Fan powered terminal units featuring the ECM motor have considerably wider turn-down ratios than conventional induction motors. Hence, only three unit sizes are required in order to provide the same fan airflow range that would require six terminal unit/fan sizes when equipped with induction motors. A reduction in the number of different terminal sizes required on a typical project simplifies design lay-out and installation and reduces inventory of field service parts.
- Fan curves shown are applicable to 230 volt, single phase ECM motors. ECM motors, although DC in operation, include a built-in inverter.

Advanced Air

35555 SERIES "STEALTH" FAN POWERED TERMINALS

Contents

Series Flow Constant Volume Fan Powered Terminal Units	Page No. F 27
Model 35SST STEALTH	
Performance Data	
Recommended Primary Airflow Ranges	F 28
Dimensions	F 29
Radiated Sound Power Levels	F 32
Discharge Sound Power Levels	F 33
Secondary Attenuators	F 34
Hot Water Supplementary Heater Batteries	F 36
Electric Supplementary Heater Batteries	F 38
Multiple Outlet Plenums	F 40
Fan Curves	F 41

Copyright© 2001 by Advanced Air (UK) Ltd. All rights reserved. The information contained in this publication is correct at the time of printing. Continuous product development means that from time to time product specifications and other information will change. The company reserve the right to modify or withdraw any of the products described without prior notice.

Series Flow Constant Volume Model 35SST STEALTH - Super Quiet Operation

Models: 35SST Cooling Only 35SEST Electric Heat 35SWST Hot Water Heat

The **Model 35SST 'STEALTH'** has been especially designed for the most demanding applications where premium quality design and performance characteristics are desired.

Features:

- Unique 18swg (1.2mm thick) galvanised steel channel space frame construction provides extreme rigidity and 18 swg casing components.
- 18swg (1.2mm thick) galvanised steel inclined opposed blade primary air damper operating on a 45° arc.
- STEALTH design technology provides significant reductions in radiated sound levels
- Unique perforated baffle on primary air discharge optimises mixing with induced air for rapid and effective temperature equalisation. The baffle also converts low frequency primary air damper generated sound into more readily attenuated higher frequencies.
- Pressure independent primary airflow control.
- Multi-point averaging flow sensor.
- Terminal may be field installed either way up, providing the additional flexibility of right or left field connections.
- Access panels on three sides of terminal for ease of maintenance and service to motor and fan from below or from the side of unit.
- Energy saving Nailor EPIC fan technology

- Motor fan assembly mounted on special 16swg. (1.6mm thick) angles and isolated from casing with rubber isolators.
- Removable door on controls enclosure.
- Acoustic/thermal lining the terminal is internally lined with a 25mm thick acoustic/thermally insulating foam which is Melamine based open cellular construction, having a nonwoven black tissue facing and complying with class O fire rating. This material is adhered to all internal surfaces and inside box/channel sections.
- Available with electric or hot water supplementary heat.
- All controls are mounted on exterior of terminal providing ready access for field adjustment.
- Each terminal factory tested prior to shipment.
- Single point electrical connections.
- Discharge opening designed for flanged duct connection.

Controls

- Analogue electronic controls. Factory supplied, mounted and calibrated.
- Digital controls. Factory mounting and wiring of DDC controls supplied by BMS Controls Manufacturers.

Options & Accessories

- Induced air filter
- Fan disconnect switch (except units with electric heat, when disconnect is an electric heat option and includes fan).
- Melinex liner
- Solid metal inner liner.
- Perforated metal liner.
- Fan airflow switch for night shutdown (analogue electronic controls).
- Night setback fan/heat cycle (analogue).
- Fan mounted total air sensor.
- Top entry induced air inlet.

Recommended Primary Airflow Ranges for Fan Powered Terminal Units

The recommended airflow ranges below are for terminal units with pressure independent controls. For a given unit size, the minimum and the maximum flow settings must be within the range limits to ensure pressure independent operation, accuracy and repeatability. For these reasons, factory settings will not be made outside these ranges. A minimum setting of zero (shut-off) is also available.

When digital or other controls are factory mounted, but supplied by others, these values are guidelines only, based upon experience with the majority of controls currently available. Controls supplied by others for factory mounting are configured and calibrated in the field.

For a detailed analysis of fan powered terminal selection procedures with working examples, consult the engineering section of this catalogue

Air Volume Range

Unit Size	Inlet Spigot dia mm	Min I/s	Max I/s
3	150	0	236
3	200	0	330
3	250	0	520
5	250	0	520
5	315	0	750
5	355	0	900
7	400	0	1400
7	450	0	1700

Model 35SST STEALTH Size 3 Terminal Dimensions

Terminal	0	Α	В	С	D	E	F	G	К	Μ	L	W	Н	X	Y	Wgt
Size	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
3-150 3-200	146 196 246	470 470 470	470 470 470	287 287 287	100 100	857 857 857	914 914 014	150 150	40 40 40	175 175 175	1238 1238 1229	400 400 400	400 400	460 460	460 460	70.0 70.0 70.0

Model 35SST STEALTH - Series Flow - Size 5

Model 35SST STEALTH Size 5 Terminal Dimensions

Terminal	0	Α	В	С	D	E	F	G	K	Μ	L	W	Н	X	Y	Wgt
Size	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
5-250	246	470	670	374	100	1144	1050	150	40	175	1375	600	400	660	460	82.5
5-315	311	470	670	374	100	1144	1050	150	40	175	1375	600	400	660	460	82.5
5-355	351	470	670	374	100	1144	1050	150	40	175	1375	600	400	660	460	82.5

Model 35SST STEALTH - Series Flow - Size 7

Model 35SST STEALTH Size 7 Terminal Dimensions

Terminal	O	A	B	C	D	E	F	G	K	M	L	W	H	X	Y	Wgt
Size	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
7-400	396	470	1321	400	100	2134	1050	150	40	175	1375	1200	400	1260	460	165.0
7-450	513x352	470	1321	400	100	2134	1050	150	40	175	1375	1200	400	1260	460	165.0

Model 35SST STEALTH • Series Flow • Acoustic Data

Radiated NC Levels

Terminal Size	Air Flow I/s	Min. inlet ∆Ps Pa	Fan Only	NC Levels Minimum ∆Ps	@ Inlet Pi 125 Pa.	ressure (Di 250Pa.	Ps) shown 375 Pa.	500Pa.
3-200	330	12	-	-	20	24	25	31
3-200	283	12	-	-	-	21	25	29
3-200	212	12	-	-	-	-	21	24
3-250	519	12	24	23	27	30	30	35
3-250	425	12	-	-	24	26	29	31
3-250	330	12	-	-	-	24	24	29
3-250	212	12	-	-	-	-	21	25
5-315	755	12	31	29	29	31	33	37
5-315	661	12	28	25	30	29	33	35
5-315	566	12	24	23	21	26	29	33
5-315	495	12	-	20	20	25	29	33
5-355	909	12	31	30	33	35	34	37
5-355	802	12	29	28	30	33	34	36
5-355	661	12	30	24	26	29	30	33
5-355	496	12	-	-	-	24	26	29
7-400	1652	60	42	40	41	44	46	49
7-400	1416	42	39	36	39	41	44	46
7-400	1180	30	34	33	35	39	41	44
7-400	944	17	29	25	30	36	39	41
7-400	708	12	23	20	25	32	36	38

Performance Notes

- 1. Application data is based on procedures and factors found in the ARI Standard 885-98; 'Procedure for estimating occupied space sound levels in the application of air terminal units and outlets'.
- 2. Min. inlet ΔPs is the minimum operating pressure of the primary air damper.
- 3. Dash (-) in space denotes an NC level of less than 20.
- 4. Discharge (external) static pressure is 63 Pa in all cases.

Performance Data Series Flow (Constant Volume) Radiated Sound Power Levels

Terminal	Air	Min.		Fan and100% Primary Air- Sound Power Octave Bands @ Inlet Pressure Shown							
Size	Flow	inlet	Fan Only	Min. ∆Ps OBCF -Hz.	. 125 Pa. ΔPs OBCF -Hz. 250Pa ΔPs OBCF -Hz. 375Pa ΔPs OBCF -Hz. 500Pa ΔPs O	BCF -Hz.					
	l/s	$\Delta Ps Pa$	125 250 500 1k 2k 4k	125 250 500 1k 2k 4k	x 125 250 500 1k 2k 4k 125 250 500 1	k 2k 4k					
	330	12	55 51 46 38 33 30	57 51 45 38 33 28	3 61 56 47 42 36 35 62 58 51 45 41 42 65 60 53 47 43 46 66 65 57 5	0 45 48					
3-200	283	12	55 50 45 37 33 29	55 50 44 37 31 27	7 59 55 46 40 35 35 65 57 49 44 41 41 64 60 52 46 43 45 64 63 55 4	3 44 47					
	212	12	51 42 42 33 30 24	50 46 40 32 28 22	2 57 51 44 39 34 34 58 54 46 40 37 36 63 57 50 45 42 42 60 59 52 4	5 43 44					
	519	12	60 58 50 44 38 33	59 58 50 43 37 33	3 64 62 52 46 41 37 66 64 55 49 44 43 67 64 57 51 46 47 68 68 59 53	3 47 50					
3-250	425	12	58 55 48 41 35 30	56 54 47 39 33 30) 61 59 50 43 38 35 63 61 52 46 42 42 65 63 55 49 44 46 66 65 57 5	1 46 49					
	330	12	53 51 45 36 31 27	52 49 43 35 29 25	5 57 55 46 40 35 33 60 58 50 44 40 40 62 59 52 46 43 44 63 63 55 4	9 45 47					
	212	12	50 47 41 32 28 21	48 45 40 31 26 19	9 54 50 43 37 33 31 56 55 43 40 38 37 59 57 49 43 41 42 59 60 51 4	6 43 45					
	755	12	71 61 52 47 45 40	69 62 52 47 44 41	I 69 63 57 49 45 42 69 65 57 51 47 45 71 66 61 54 50 51 71 70 63 50	6 51 54					
5-315	661	12	68 57 49 45 41 37	66 57 49 42 40 37	7 68 60 54 45 42 39 68 63 56 49 45 45 68 66 59 52 48 50 70 68 63 5	5 50 53					
	566	12	66 55 47 42 39 35	64 54 46 40 37 34	4 62 57 51 43 40 38 65 61 54 48 44 44 66 63 57 50 47 49 67 66 60 53	2 48 51					
	495	12	61 52 45 39 35 32	61 52 43 37 33 30	0 61 56 49 41 38 37 62 60 52 46 43 43 64 63 56 48 46 48 66 66 58 5	0 48 50					
	909	12	71 63 54 50 47 44	69 64 56 51 47 45	5 71 66 58 52 49 47 72 68 59 53 50 50 73 67 61 54 51 53 73 70 62 5	5 52 55					
5-355	802	12	69 62 53 48 46 42	68 62 53 48 45 42	2 69 64 55 49 46 44 70 66 57 51 48 48 71 67 59 52 50 52 71 69 61 54	4 51 54					
	661	12	66 59 50 45 42 39	65 57 49 43 40 37	7 67 60 52 45 43 41 67 63 54 48 46 46 68 63 56 50 48 50 69 66 59 53	2 50 53					
	496	12	61 53 45 39 35 32	59 52 43 37 34 31	I 61 55 47 41 39 37 63 59 50 44 43 44 63 61 53 46 46 48 64 63 55 44	3 48 51					
	1642	60	76 71 63 56 53 50	74 68 62 54 48 46	3 75 68 62 54 48 47 77 69 63 55 50 50 79 69 65 57 52 53 81 72 67 5	3 54 56					
7-400	1416	42	73 67 62 52 47 44	71 65 58 51 44 42	2 73 65 59 51 45 43 75 66 61 52 48 47 77 68 63 55 50 52 79 70 65 5	7 53 54					
	1180	30	69 63 57 49 45 41	68 61 56 45 39 37	7 70 61 56 47 42 40 73 64 59 50 47 47 75 64 61 52 49 50 77 68 63 5	5 51 53					
	944	17	65 57 52 44 37 33	62 55 50 39 33 30) 66 57 53 43 40 37 71 61 56 48 45 45 73 63 59 50 47 49 75 66 62 5	3 50 52					
	708	10	61 53 48 37 32 28	59 51 46 35 29 25	5 63 54 50 40 37 34 68 58 54 45 43 43 71 61 57 48 46 47 72 63 60 5	1 48 50					

1. Discharge (external) static pressure is 63 Pa in all cases. It is the difference (ΔPs) in static pressure from terminal discharge to the room.

2. Radiated sound power is the breakout noise transmitted through the unit casing walls and induction port.

3. Sound power levels are in decibels, dB re 10^{-12} watts.

4. All sound data listed by octave bands is raw data without any corrections for room absorption or duct attenuation.

5. Min. inlet ΔPs is the minimum operating pressure of the primary air damper section.

6. Data derived from independent tests conducted in accordance with ANSI/ASHRAE Std. 130-1996 and ARI Standard 880-98.

Model 35SST STEALTH • Series Flow • Acoustic Data

Discharge NC Levels

Terminal	Air	Min.		NC Levels	@ Inlet Pr	essure (DI	Ps) shown	
Size	Flow	inlet	Fan	Minimum	125 Pa.	250Pa.	375 Pa.	500Pa.
	l/s	$\Delta Ps Pa$	Only	ΔPs				
3-200	330	12	-	-	-	-	-	-
3-200	283	12	-	-	-	-	-	-
3-200	212	12	-	-	-	-	-	-
3-250	519	12	-	-	-	-	-	-
3-250	425	12	-	-	-	-	-	-
3-250	330	12	-	-	-	-	-	-
3-250	212	12	-	-	-	-	-	-
5-315	755	12	-	-	-	-	-	-
5-315	661	12	-	-	-	-	-	-
5-315	566	12	-	-	-	-	-	-
5-315	495	12	-	-	-	-	-	-
5-355	909	12	22	22	23	24	24	24
5-355	802	12	20	-	20	20	20	20
5-355	661	12	-	-	-	-	-	-
5-355	496	12	-	-	-	-	-	-
7-400	1652	60	39	32	34	35	35	35
7-400	1416	42	33	29	29	30	32	33
7-400	1180	30	26	23	24	25	27	30
7-400	944	17	20	-	-	22	25	26
7-400	708	12	-	-	-	-	22	25

Performance Notes

- 1. Application data is based on procedures and factors found in the ARI Standard 885-90; 'Procedure for estimating occupied space sound levels in the application of air terminal units and outlets'.
- 2. Min. inlet ΔPs is the minimum operating pressure of the primary air damper.
- 3. Dash (-) in space denotes an NC level of less than 20.
- 4. Discharge (external) static pressure is 63 Pa in all cases.

Performance Data Series Flow (Constant Volume) Discharge Sound Power Levels

Terminal	Air	Min.		Fa	Fan and100% Primary Air- Sound Power Octave Bands @ Inlet Pressure Shown					
Size	Flow	inlet	Fan Only	Min. ∆Ps OBCF -Hz.	125 Pa. ∆Ps OBCF -Hz. 250Pa ∆Ps OBCF -Hz. 375Pa ∆Ps OBCF -Hz.	500Pa ∆Ps OBCF -Hz.				
	l/s	$\Delta \mathbf{Ps} \ \mathbf{Pa}$	125 250 500 1k 2k 4k	125 250 500 1k 2k 4k	125 250 500 1k 2k 4k 125 250 500 1k 2k 4k 125 250 500 1k 2k 4k	125 250 500 1k 2k 4k				
	330	12	56 56 59 56 52 48	57 56 59 55 51 48	58 58 60 56 52 48 59 59 60 56 52 48 61 61 60 56 52 48	61 61 61 58 52 48				
3-200	283	12	56 55 58 55 51 46	56 55 58 54 50 45	57 57 50 55 51 46 58 58 59 55 51 46 59 58 59 55 51 46	59 60 59 55 49 46				
	212	12	55 52 54 50 46 38	55 52 54 50 45 37	56 53 55 50 45 38 57 54 55 50 45 38 57 55 55 49 44 38	57 55 55 49 44 38				
	519	12	62 64 68 65 62 61	61 64 68 64 63 61	65 67 68 64 63 61 66 67 69 66 64 62 67 67 69 67 64 62	68 68 69 67 61 62				
3-250	425	12	60 61 64 61 58 56	59 61 63 60 57 55	61 63 65 62 59 56 63 64 65 63 60 57 64 64 65 63 60 58	64 65 65 63 60 58				
	330	12	57 58 59 55 52 48	57 58 58 55 51 48	59 59 60 57 53 49 60 60 60 57 54 50 60 59 60 57 53 50	61 61 60 57 53 50				
	212	12	57 56 54 50 46 38	56 56 54 50 45 38	57 56 55 51 46 39 58 57 55 50 46 39 58 57 55 50 46 39	59 57 55 50 45 40				
	755	12	67 68 69 69 66 65	67 67 68 67 64 63	69 69 68 65 65 70 70 69 68 65 65 70 70 69 68 65 65 70 70 69 68 65 65 70 70 69 68 65 65 1 <td< th=""><th>71 70 69 68 64 64</th></td<>	71 70 69 68 64 64				
5-315	661	12	66 66 67 66 63 62	64 64 65 64 61 61	67 66 66 64 62 62 68 67 66 65 62 62 68 67 66 65 62 62	69 67 67 65 62 61				
	566	12	62 62 63 62 59 58	60 61 62 60 57 57	63 63 62 61 58 58 64 63 63 61 58 57 64 63 63 61 58 57	66 65 63 61 57 57				
	495	12	60 59 59 58 55 53	58 58 59 57 53 53	60 59 58 54 53 62 60 59 57 54 53 62 60 59 57 54 53	64 62 60 57 54 53				
	909	12	73 74 73 74 71 70	73 74 73 73 70 70	73 74 74 73 70 70 74 75 74 73 71 70 74 75 74 73 71 70	75 75 74 73 70 70				
5-355	802	12	71 71 70 70 67 67	69 69 70 69 66 66	71 71 71 70 67 66 72 71 71 70 67 66 72 71 70 69 66 66	72 71 70 69 66 66				
	661	12	67 67 67 67 63 63	64 64 66 62 61 61	67 67 65 65 62 62 68 66 66 65 62 62 68 65 66 65 61 61	68 67 66 65 61 62				
	496	12	60 60 61 60 56 54	59 59 59 58 54 53	60 60 60 58 55 54 61 60 60 58 54 54 63 61 60 58 54 54	64 62 60 58 55 54				
	1642	60	73 76 76 77 75 75	69 71 74 73 71 69	70 71 74 73 71 71 72 73 74 74 71 72 74 73 75 74 72 72	76 76 76 75 73 73				
7-400	1416	42	70 71 73 73 70 70	66 67 69 69 66 66	67 68 70 69 67 66 70 70 71 70 68 68 71 71 72 71 69 69	73 73 72 71 69 70				
	1180	30	65 66 68 67 64 63	61 62 64 63 60 59	63 63 65 64 61 60 66 66 66 65 63 62 69 68 67 65 64 64	71 71 68 67 65 66				
	944	17	59 60 63 61 57 56	55 56 58 57 53 51	59 59 60 58 56 53 63 62 61 60 59 58 65 65 63 61 61 61	67 68 64 63 63 63				
	708	10	53 55 56 54 50 47	50 51 53 51 46 43	55 54 54 53 51 47 59 59 57 56 57 54 62 62 60 59 60 58	64 65 62 60 61 60				

1. Discharge (external) static pressure is 63 Pa in all cases. It is the difference (ΔPs) in static pressure from terminal discharge to the room.

2. Radiated sound power is the breakout noise transmitted through the unit casing walls and induction port.

- 3. Sound power levels are in decibels, dB re 10^{12} watts.
- 4. All sound data listed by octave bands is raw data without any corrections for room absorption or duct attenuation.
- 5. Min. inlet ΔPs is the minimum operating pressure of the primary air damper section.
- 6. Data derived from independent tests conducted in accordance with ANSI/ASHRAE Std. 130-1996 and ARI Standard 880-98.

Secondary Attenuators-Dimensions Model 35SFBST and 35SFGST

W mm	H mm	X mm	Y mm	L mm	Wgt kg
400	400	460	460	600	21.00
400	400	400	400	000	21.00
400	400	400	400	900	20.00
400	400	400	400	1200	35.00
400	400	400	400	000	21.00
400	400	460	460	900	28.00
400	400	460	460	1200	35.00
400	400	460	460	600	21.00
400	400	460	460	900	28.00
400	400	460	460	1200	35.00
600	400	660	460	600	28.00
600	400	660	460	900	36.00
600	400	660	460	1200	44.00
600	400	660	460	600	28.00
600	400	660	460	900	36.00
600	400	660	460	1200	44.00
600	400	660	460	600	28.00
600	400	660	460	900	36.00
600	400	660	460	1200	44.00
1200	400	1260	460	600	45.00
1200	400	1200	460	000	50.00
1200	400	1200	460	1200	73.00
1200	400	1260	460	600	45.00
1200	400	1260	460	900	59.00
1200	400	1260	460	1200	73 00
	W 400 400 400 400 400 400 400 400 400 400 400 400 600 600 600 600 600 600 600 600 600 1200 1200 1200 1200 1200 1200 1200	W H mm mm 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 600 400 600 400 600 400 600 400 600 400 600 400 600 400 600 400 600 400 600 400 1200 400 1200 400 1200 400 1200 400 1200 400	W H X mm mm mm 400 400 460 400 400 460 400 400 460 400 400 460 400 400 460 400 400 460 400 400 460 400 400 460 400 400 460 400 400 460 400 400 460 400 400 460 600 400 660 600 400 660 600 400 660 600 400 660 600 400 660 600 400 660 600 400 660 600 400 1260 1200 400 1260 1200 400 1260 1200 400 1260 </th <th>W H X Y mm mm mm mm 400 400 460 460 400 400 460 460 400 400 460 460 400 400 460 460 400 400 460 460 400 400 460 460 400 400 460 460 400 400 460 460 400 400 460 460 400 400 460 460 400 400 460 460 400 400 460 460 400 400 660 460 600 400 660 460 600 400 660 460 600 400 660 460 600 400 660 460 600 400 660 460 <!--</th--><th>W H X Y L mm mm mm mm mm mm 400 400 460 460 460 900 400 400 660 460 900 600 400 660 460 900 600 400 660 460 900 600 400 660 460 900 600</th></th>	W H X Y mm mm mm mm 400 400 460 460 400 400 460 460 400 400 460 460 400 400 460 460 400 400 460 460 400 400 460 460 400 400 460 460 400 400 460 460 400 400 460 460 400 400 460 460 400 400 460 460 400 400 460 460 400 400 660 460 600 400 660 460 600 400 660 460 600 400 660 460 600 400 660 460 600 400 660 460 </th <th>W H X Y L mm mm mm mm mm mm 400 400 460 460 460 900 400 400 660 460 900 600 400 660 460 900 600 400 660 460 900 600 400 660 460 900 600</th>	W H X Y L mm mm mm mm mm mm 400 400 460 460 460 900 400 400 460 460 900 400 400 460 460 900 400 400 460 460 900 400 400 460 460 900 400 400 460 460 900 400 400 460 460 900 400 400 460 460 900 400 400 460 460 900 400 400 660 460 900 600 400 660 460 900 600 400 660 460 900 600 400 660 460 900 600

Secondary Attenuators

All Nailor terminal units are available with attached secondary attenuators

Casing:

Manufactured from 18 swg. (1.2mm thick) folded Galvanised Mild Steel sheet, formed into a rectangular casing, all longitudinal casing joints are mechanically sealed.

Flanges:

Intake and discharges incorporate rectangular flanges, which are mechanically fixed to the main body of the attenuator.

Splitters:

Arranged within the casing are vertical attenuating splitter sections manufactured from 21swg. (0.8mm thick) galvanised mild steel, fixed to the casing by rivets. Splitters are fitted at inlet and discharge with aerodynamically shaped bullnose fairings. Splitters are fitted with 22 swg. (0.7mm thick) expanded or perforated metal facings. Horizontal splitters are also available if required.

Acoustic infill:

Splitters and side linings are filled with an inert, non combustible, non hygroscopic, vermin and rot proof mineral fibre slab which will not support bacterial growth. Usually faced with a glass fibre tissue (FB), however hermetically sealed Melinex membrane bags (FG) are available wherever indoor air quality conditions demand.

Acoustic Performance Data - Secondary Attenuator Static Insertion Loss dB Model 35SFBST and 35SFGST

Terminal	Air	Air	Press.	width	height	length						
size	vol.	vol.	drop						O.B.C.	FHz		
	l/s.	m³/h	Pa.	mm.	mm.	mm.	125	250	500	1k	2k	4k
3-150	24	324	neg.	400	400	600	6	8	15	18	13	9
3-150	236	1872	15	400	400	600	6	8	15	18	13	9
3-150	24	324	neg.	400	400	900	9	12	20	25	19	12
3-150	236	1872	15	400	400	900	9	12	20	25	19	12
3-150	24	324	neø.	400	400	1200	11	16	30	36	25	15
3-150	236	1872	20	400	400	1200	11	16	30	36	25	15
3-200	30	324	neg.	400	400	600	6	8	15	18	13	9
3-200	330	1872	15	400	400	600	6	8	15	18	13	9
3-200	30	324	neg.	400	400	900	9	12	20	25	19	12
3-200	330	1872	15	400	400	900	9	12	20	25	19	12
3-200	30	324	neg.	400	400	1200	11	16	30	36	25	15
3-200	330	1872	20	400	400	1200	11	16	30	36	25	15
3-250	50	324	neg.	400	400	600	6	8	15	18	13	9
3-250	520	1872	15	400	400	600	6	8	15	18	13	9
3-250	50	324	neg.	400	400	900	9	12	20	25	19	12
3-250	520	1872	15	400	400	900	9	12	20	25	19	12
3-250	50	324	neg.	400	400	1200	11	16	30	36	25	15
3-250	520	1872	20	400	400	1200	11	16	30	36	25	15
5-250	60	216	neg.	600	400	600	1	3	5	6	5	2
5-250	640	2304	60	600	400	600	1	3	5	6	5	2
5-250	60	216	neg.	600	400	900	2	5	8	10	7	3
5-250	640	2304	60	600	400	900	2	5	8	10	7	3
5-250	60	216	neg.	600	400	1200	3	6	10	13	9	4
5-250	640	2304	65	600	400	1200	3	6	10	13	9	4
5-315	75	270	neg.	600	400	600	1	3	5	6	5	2
5-315	750	2700	60	600	400	600	1	3	5	6	5	2
5-315	75	270	neg.	600	400	900	2	5	8	10	7	3
5-315	750	2700	60	600	400	900	2	5	8	10	7	3
5-315	75	270	neg.	600	400	1200	3	6	10	13	9	4
5-315	750	2700	65	600	400	1200	3	6	10	13	9	4
5-355	105	378	neg.	600	400	600	1	3	5	6	5	2
5-355	900	3240	60	600	400	600	1	3	5	6	5	2
5-355	105	378	neg.	600	400	900	2	5	8	10	7	3
5-355	900	3240	60	600	400	900	2	5	8	10	7	3
5-355	105	378	neg.	600	400	1200	3	6	10	13	9	4
5-355	900	3240	65	600	400	1200	3	6	10	13	9	4
7-400	130	468	1	1200	400	600	9	14	19	32	31	23
/-400	1400	5040	37	1200	400	600	9	14	19	32	31	23
/-400	130	468	1	1200	400	900	12	18	25	42	41	29
7-400	1400	5040	43	1200	400	900	12	18	25	42	41	29
7-400	130	468	1	1200	400	1200	14	22	31	50	50	35
7-400	1400	5040	45	1200	400	1200	14	22	31	50	50	35
7-450	150	540	3	1200	400	600	9	14	19	32	31	23
7-450	1/00	0120	40	1200	400	000	9	14	19	32	51	23
7-450	150	540	3	1200	400	900	12	18	25	42	41	29
7-450	1/00	0120	43	1200	400	900	12	18	25	42	41	29
7-450	150	540	3	1200	400	1200	14	22	51	50	50	35
7-450	1700	0120	4/	1200	400	1200	14	22	31	50	50	35

Low Pressure Hot Water Supplementary Heater Batteries - Dimensions -Model 35SWST

Terminal	W	H	L	X	Y	Wgt
Size	mm	mm	mm	mm	mm	kg
3-150	400	400	200	460	460	15.00
3-200	400	400	200	460	460	15.00
3-250	400	400	200	460	460	15.00
5-250	600	400	200	660	460	18.00
5-315	600	400	200	660	460	18.00
5-355	600	400	200	660	460	18.00
7-400	1200	400	200	1260	460	25.00
7-450	1200	400	200	1260	460	25.00

All terminal units are available with factory installed low pressure hot water supplementary heater batteries.

Casing:

Manufactured from 18swg. (1.2mm thick) folded galvanised mild steel sheet, formed into a rectangular casing, all casing joints are mechanically sealed.

Inlets and outlets incorporate rectangular flanges, which are mechanically fixed to the main body of the casing.

Water Tubes:

Manufactured from 10mm diam. copper tube to BS 1278 table Y.

Pipe Connections:

Plain male ends suitable for solder jointing.

Heat Exchange Fins:

Manufactured from 0.13mm thick rectangular aluminium plates, mechanically bonded to the copper tubes. Fins are spaced at 2.5mm intervals.

All low pressure hot water supplementary heater batteries incorporate an air vent and drain point.

Pressure Testing:

All low pressure hot water supplementary heater batteries are air pressure tested under water to a pressure of 3,000 kPa.

LPHW Supplementary Heater Battery Performance 82°C Flow, 71°C Return, 10 fpi Model 35SWST

Terminal	Air Vol	Air Vol	Dimen	sions	Face	Air On	1 Row	/ Air	Water	Water	Air	2 Row	Air	Water	Water	Air
3120	l/s	m³/h	mm	mm	m/s	°C	kW	°C	KPa	kg/s	Pa	kW	°C	kPa	kg/s	Pa
3-150	95	342	400	400	0.6	13	3.2	41	0.9	69.5	2.4	4.9	56	1.2	106.5	4
3-150	110	396	400	400	0.7	13	3.7	41	1.1	80.5	3.1	5.7	56	1.6	124.2	5
3-150	150	540	400	400	0.9	13	5.0	41	2.0	108.9	5.2	7.9	57	3.0	170.1	9
3-150	185	666	400	400	1.2	13	6.0	40	2.7	129.0	7.4	9.4	55	4.20	203.5	13
3-200	210	756	400	400	1.3	13	6.5	39	3.2	140.5	9.2	10.3	54	5.	224.0	16
3-200	283	1019	400	400	1.8	13	8.0	37	4.8	174.0	15	13.1	51	7.8	282.7	27
3-200	330	1188	400	400	2.1	13	8.9	35	5.8	193.3	20	14.7	50	9.7	203.5	35
3-250	210	756	400	400	1.3	13	6.5	39	3.2	140.5	9.2	10.3	54	5.0	224.0	16
3-250	330	1188	400	400	2.1	13	8.9	35	5.8	193.3	20	14.7	50	9.7	317.3	35
3-250	425	1530	400	400	2.7	13	10.6	34	8.0	229.7	30	17.7	48	14.0	383.1	53
3-250	520	1872	400	400	3.2	13	12.4	33	10.7	267.7	43	20.8	46	19.0	450.2	75
5-250	210	756	600	400	0.9	13	7.3	42	4.5	157.6	4.6	11.3	58	6.3	245.5	8
5-250	330	1188	600	400	1.4	13	10.4	39	8.7	224.9	9.9	16.6	55	12.9	358.7	17
5-250	425	1530	600	400	1.8	13	11.7	36	5.9	252.4	16	19.0	50	13.4	411.5	27
5-250	520	1872	600	400	2.2	13	13.4	34	7.7	289.4	22	22.1	48	17.8	477.9	37
5-315	495	1782	600	400	2.1	13	12.9	35	7.2	280.1	20	21.3	49	16.6	461.0	32
5-315	565	2034	600	400	2.3	13	14.1	39	8.5	306.3	25	23.4	42	20.0	507.6	43
5-315	660	2376	600	400	2.7	13	15.7	33	6.4	339.8	32	26.3	46	24.9	569.3	57
5-315	750	2700	600	400	3.1	13	17.4	32	12.6	376.4	40	29.2	45	30.5	633.1	70
5-355	495	1782	600	400	2.1	13	12.9	35	7.2	280.1	20	21.3	49	16.6	461.0	32
5-355	660	2376	600	400	2.7	13	15.7	33	6.4	339.8	32	26.3	46	24.9	569.3	57
5-355	800	2880	600	400	3.3	13	18.2	32	13.7	393.9	45	30.7	45	33.5	664.9	78
5-355	910	3276	600	400	3.8	13	19.9	3.1	16.2	429.9	56	33.7	44	40.1	730.5	98
7-400	948	3413	1200	400	2.0	13	26.9	37	10.8	583.3	18	36.9	45	14.8	799.4	32
7-400	1080	3888	1200	400	2.2	13	29.5	36	12.8	638.5	23	40.0	44	17.7	865.8	40
7-400	1274	4586	1200	400	2.6	13	33.0	35	15.9	714.3	30	45.0	42	22.0	974.0	53
7-400	1440	5184	1200	400	3.0	13	36.0	34	18.5	779.2	37	49.0	41	26.0	1060.6	65
7-450	944	3398	1200	400	2.0	13	27.0	37	10.8	584.4	18	36.0	45	19.7	779.2	32
7-450	1227	4417	1200	400	2.6	13	32.0	35	15.0	692.6	28	44.0	43	21.0	952.4	50
7-450	1534	5522	1200	400	3.2	13	38.0	34	21.0	822.5	42	52.0	41	29.0	1125.5	73
/-450	1/23	6023	1200	400	3.6	13	41.5	33	24.0	898.3	50	57.0	40	34.0	1233.8	89

Electric Supplementary Heater Batteries - Dimensions Model 35SEST

All terminal units are available with factory installed electric supplementary heater batteries.

Casing:

Manufactured from 18 swg. (1.2mm thick) folded galvanised mild steel sheet, formed into a rectangular casing, all casing joints are mechanically sealed.

Intake and discharges incorporate rectangular flanges, which are mechanically fixed to the main body of the casing.

Electric Elements:

Manufactured from stainless steel tubing with copper resistance wire and magnesium oxide insulation.

High Temperature Cut-Out:

All electric supplementary heater batteries incorporate automatic and manual high temperature cut-out safety devices, which disconnect the electrical power in the event that the air temperature exceeds a pre set maximum.

Pressure Switch:

All electric supplementary heater batteries incorporate a positive pressure switch which does not permit the heating elements to be energised unless there is positive air pressure (indicating airflow) available.

Electric Supplementary Heater Battery Performance

Model 35SEST

kW 54.0	n/a n/a n/a n/a	n/a n/a n/a	n/a n/a n/a n/a	n/a n/a n/a n/a	n/a n/a n/a n/a	n/a n/a n/a n/a	n/a n/a n/a n/a	n/a n/a 1/a
kw 52.0	n/a n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a √
KW 60.0	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a √
8.0	n/a n/a n/a	n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	√ √ a √ a
śW 6.0 4	1/a 1/a 1/a 1/a	1/a 1/a 1/a	1/a b/r b/r b/r	1/a b/r b/r b/r	1/a b/r b/r b/r	1/a 1/a 1/a 1/a 1/a	//a //a //a //	
¥ 4	/a 1 /a 1 /a 1	/a 1 /a 1	/a/ /a/ /a/	/a/a/a/a/a/a/a	/a/a/a/a/a/a/a	/a/ /a/ /a/	/a _ /a _	2 2 9 9
× 4	/a n /a n /a n	/a n /a n /a n	/a n /a n /a n	/a n /a n /a n	/a n /a n /a n	/a n /a n /a n	/a n /a n /a n	/a/
× 0. 4 4	ם ם ם ם	ם חחח	ם ם ם ם ם	ם ם ם ם	ם ם ם ם	ם ם ם ם ם	ا ت ت ت ت	م م ،
- 0 K 9 K		a n/ a n/	<u>ה ה ה</u> ה מ ח ה ה	<u>ה ה</u> ה מים ה	<u>ה ה</u> ה מים ה	ע דע דע מים אין	 - 2 2 2 - 2 2 2 	
9 K 0 38	2222	2 2 2	2222	2222	2222	2222	222	2-7-7
0 36.		222	2222	2222	2222	2222	2222	2722
34.	2222		2222	2222	2222		2777	2777
0 32.		2/u					2 2 2 2	$\frac{2}{2}$ \rightarrow \rightarrow \rightarrow
30.	n/a n/a n/a	n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	イイイイ	イイイイ
kW 28.0	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a √	n/a n/a √	イイイイ	イイイイ
kW 26.0	n/a n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a √	n/a n/a √	イイイイ	イイイイ
kw 24.0	n/a n/a n/a n/a	n/a n/a n/a	n/a n/a n/a n/a	n/a n/a n/a n/a	n/a n/a √	n/a √ √	~~~~	イイイイ
kW 22.0	n/a n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a 1/a	n/a √ √	イイイイ	イイイイ
kW 20.0	n/a n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a √ ✓	イトト ^u	イイイイ	イイイイ
kW 18.0	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	イトトa	へ く く ¹	ッッッン	ッッッッ
kw 17.0	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	< ح< ح	~ < < ²	イイイ	イイイイ
16.0	n/a n/a n/a	n/a √	n/a n/a √	n/a n/a √	イトトロ	イトトロ	イイイイ	~~~~
kw 15.0	n/a n/a n/a	n/a √	n/a n/a √	n/a n/a √	イイイ	イイイ	イイイ	~~~~
kw 14.0	n/a n/a n/a	n/a √	n/a n/a	n/a n/a	רי רי רי	רי רי רי	רי רי רי	~ ~ ~ ~ ~
8 0 3.0	n/a n/a n/a	√'a √'a	~ ~ <u>~</u> ~ ~	~ ~ ~ ~ ~	イイイイ	イイイ	イイイ	イイイイ
KW 2.0	a/ر a/ر a/ر	√'a	z z z z	~~~~~	~~~~ ~	~~~~ ~	~~~~ ~	~~~ ~
¥ 0:	1/a 1/a 1/a 1/a	√ √	√/a 1 √/a	~ ~ \a	555	~~~~~	~~~~~	~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
\$ 0.0	//a r //a r //a r	√a r √	2	2	5555	5555	5555	5555
¥ 0.	//a r //a r //a r	<			5555	5555	5555	5555
× 9	/a 1 /a 1 /a 1	a	e s s s s s s s s s s s s s s s s s s s	e s s s s s s s s s s s s s s s s s s s	<u> </u>	<u> </u>	<u> </u>	~~ <u>~</u> ~
× 5	/a 1 /a 1 /a 1	e	<u>6</u> , , , ,					~~~~
3 R	/a n /a n /a n /a n	/a / /	e	e				~~~~
× ₹	/a n /a n /a n							
2 Q K	/a n /a n /a n	~ ~ ~ ~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~
× ₀ × ₀	, a n , a n							
0 K	בבבי מממר							
5 K 2 K	66. ' 555.	~ ~ ~ ~	~ ~ ~ ~ ~	~ ~ ~ ~ ~	~ ~ ~ ~ ~	~ ~ ~ ~ ~	~ ~ ~ ~ ~	~ ~ ~ ~ ~
∧ 0 K 4.	ت ته ته حرب ت	~ ~ ~ ~	~ ~ ~ ~ ~	~ ~ ~ ~ ~	~ ~ ~ ~ ~	~ ~ ~ ~ ~	~ ~ ~ ~ ~	> > > > >
2 K 4 K		~~~	~~~~	~ ~ ~ ~ ~	~ ~ ~ ~ ~	~~~~	~~~~	~~~~
N K	2>>>	~~~	~~~~	~~~~	~~~~	~~~~	~~~~	>>>>
2 KV	~~~~	< <i>د</i> د	~~~~	~~~~	~~~~	~~~~	~~~~	~~~~
V KV	~~~~	~ ~ ~	~ ~ ~ ~	~ ~ ~ ~	~ ~ ~ ~	~ ~ ~ ~	~ ~ ~ ~	~ ~ ~ ~
/ KM	~ ~ ~ ~	~ ~ ~	~ ~ ~ ~	~ ~ ~ ~	~ ~ ~ ~	~ ~ ~ ~	~ ~ ~ ~	イイイイ
1.5	~ ~ ~ ~	~ ~ ~	イイイイ	イイイイ	イイイイ	イイイイ	イイイイ	イヘヘク
1:0	イイイイ	イイイ	~ ~ ~ ~	イイイイ	イイイイ	~ ~ ~ ~	~ ~ ~ ~	イイイイ
t kw 0.5	イイイイ	イイイ	アイイイ	アイイイ	アイイイ	アイイイ	アイイイ	イイイイ
sions teigh	00000			00000	00000			
mens idth F m n	0 0 0 4 4 4	0 0 0 4 4 4	0 0 0 0 4 4 4 4	0 0 0 0 4 4 4 4	0 0 0 0 4 4 4 4	0 0 0 0 4 4 4 4	00 4 4 00 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 00 4 4 4 4
	40 40 1 40	3 40 5 40 7 40	3 40 9 40 2 40	8 60 8	7 60 9 60 3 60	7 60 9 60 2 60	7 12 8 12 9 12 2 12	7 12 9 12 3 12 0 12
h Pe	12 5 16 7 0 9 6 11	6 1: 119 15 88 17	6 1 88 1 30 19 72 2:	6 8 88 1 30 1 72 18	82 1 34 1 76 1 00 2	82 1 76 1 80 2 76 3	113 11 1888 11 1986 11 1986 11 1986 11 1984 21	98 1: 117 1: 122 2: 23 3(
z S į	0 39 0 54 5 66	0 75 3 10 0 11:	0 75 0 11 5 15 0 18	0 75 0 11 5 15 0 18	5 17 5 20 0 23 0 27	5 17 0 23 0 28 0 32	8 34 80 38 74 45 40 51	4 33 27 44 34 55 34 55 23 60
ial Aii Vo I/s) 95) 11() 15() 18) 21) 28) 33	0 21 9 33 5 22	0 21 0 33 52 2	56 75	66 66 80 80 80 80 80 80 80 80 80 80 80 80 80	94 12 14 14) 94) 12) 15) 17
Termir Size	3-150 3-150 3-150 3-150 3-150	3-200 3-200 3-200	3-25(3-25(3-25(3-250	5-250 5-250 5-250 5-250	5-315 5-315 5-315 5-315 5-315	5-355 5-355 5-355 5-355	7-400 7-400 7-400 7-400	7-45(7-45(7-45(7-450

Maximum recommended Leaving Air Temperature - 39°C

High temperature cut-out settings:

70°C 120°C

Automatic -Manual -

F 39

Model 35GB - Insulation faced with non woven tissue as standard. Model 35GG - Insulation covered with hermetically sealed Melinex membrane bags for indoor air quality applications.

Terminal Size	W	H	X	Y mm	Spigot diam	Spigot	Spigot	Spigot	Spigot diam	Spigot	Spigot diam	Spigot	Wgt ko
5120					mm	Чч	mm	419	mm	Ччу	mm	Ччу	кg
3-150	400	400	460	460	150	A-K	200	A-K	250	A-K	315	A-K	15.0
3-200	400	400	460	460	150	A-K	200	A-K	250	A-K	315	A-K	15.0
3-250	400	400	460	460	150	A-K	200	A-K	250	A-K	315	A-K	15.0
5-250	600	400	660	460	150	A-L	200	A-L	250	A-K	315	A-K	25.5
5-315	600	400	660	460	150	A-L	200	A-L	250	A-K	315	A-K	25.5
5-355	600	400	660	460	150	A-L	200	A-L	250	A-K	315	A-K	25.5
7-400	1200	400	1260	460	150	A-N	200	A-N	250	A-M	315	A-L	45.0
7-450	1200	400	1260	460	150	A-N	200	A-N	250	A-M	315	A-L	45.0

Series Flow ECM Brushless DC Motor Performance Data Model 35SST

Fan Curves - Airflow vs. Downstream Static Pressure

Unit Size 5 (3/4 H.P.)

Unit Size 7 (2 @ 3/4 H.P.)

Notes

- The fan curves for the ECM motor are unlike those for traditional induction motors. The ECM motor is constant volume and airflow does not vary with changing static pressure conditions. The motor compensates for any changes in external static pressure or varying internal conditions such as filter loading.
- Airflow can be set to operate on a horizontal performance line at any point within the shaded area using the solid state volume controller provided.
- Fan powered terminal units featuring the ECM motor have considerably wider turn-down ratios than conventional induction motors. Hence, only three unit sizes are required in order to provide the same fan airflow range that would require six terminal unit/fan sizes when equipped with induction motors. A reduction in the number of different terminal sizes required on a typical project simplifies design lay-out and installation and reduces inventory of field service parts.
- Fan curves shown are applicable to 230 volt, single phase ECM motors. ECM motors, although DC in operation, include a built-in inverter.
Advanced Air

Engineering Guide

Contents

	Page No.
System Selection	E 1
Building Use	
Acoustical Constraints	
Environmental Factors	
Contamination Considerations	
Maintenance and Accessibility	
Cost Factors	
Terminal Unit Selection	E 2
Single Duct	
Fan Powered Series Flow (Constant Volume)	
Fan Powered Series Flow (Constant Volume) Super Quiet Operation	
Fan Powered Series Flow, Low Temperature Air Distribution	
Introduction to Variable Air Volume Terminal Controls	E 4
Pressure Independent	
Control Types	E 5
Analogue Electronic Systems (Pressure Independent)	
Direct Digital Electronic (DDC) Systems (Pressure Independent)	
Features of Series Flow Fan Powered Terminals	E 6
General	
Applications	
Configuration	
Fan Design	
VAV COORING and Three Static Pressure Requirements	
Fan Interlocks	
Acoustics	
Energy Consmption	
Fan Flow Control on Fan Powered Terminal Units	E 7
Introduction	
Nailor EPIC Fan Technology	
Fan Shift in Series Flow Fan Powered Terminal Units	
Caution on Meters	
Natior Benefits	
Sizing Fan Powered Terminals	E 9
Primary Air Damper Selection	
Fan Size Selection	
Acoustics	
Terminal Installation and Application Precautions. Avoiding Common Problems	E 10
Observe Space Restrictions	
Optimise Inlet Conditions	
Observe Zoning Requirements	
Optimise Discharge Conditions	
Avoid Excessive Air Temperature Rise	
Correctly Supported Terminal	
Minimise Duct Leakage	
Useful Formulae and Definitions	E 13

Copyright© 2001 by Advanced Air (UK) Ltd. All rights reserved. The information contained in this publication is correct at the time of printing. Continuous product development means that from time to time product specifications and other information will change. The company reserve the right to modify or withdraw any of the products described without prior notice.

System Selection

Designers have various systems to choose from when designing a building. Choosing which one to use is not always easy. The owners' needs must be met for installation, application and cost of operation. The designer must consider performance, capacity, reliability and spatial requirements and restrictions. The following guidelines describe different types of equipment and their general uses, restrictions and limitations.

Building Use

The designer must consider the intended building use as he begins to consider the type of equipment he will use. Office buildings with daily operational schedules may use fan powered terminal units. Usually fan powered terminals with auxiliary heaters (supplementary heat) would be used in the perimeter zones. These terminal units allow the greatest flexibility for individual zones while also allowing the central system to be turned off during unoccupied periods. During the unoccupied periods, the fan powered terminal units maintain the minimum or set back temperature levels without the help of the central air conditioning equipment.

Building Size

In large buildings, the central air handling units deliver large volumes of air to many zones with different needs. This is a perfect application for fan powered terminal units. Interior zones may not require heat at all; therefore they can be served either by single duct units or fan powered units with no supplemental heat. Unless the building is located in a tropical climate, the perimeter zones will require some type of heat, either electric or hot water. These are usually included with the terminal units, but sometimes perimeter heat is used. Buildings where the owner desires low operating costs usually employ series type fan powered terminal units, and the static pressure in the ducts is lowered to 125 Pa or less at the highest points. Interior zones in these buildings would require fan powered terminal units.

In shopping malls and other low rise buildings where each tenant area is small and in very small buildings, it is common to use small package air conditioners. If terminal units are employed on these systems, usually bypass units are selected. A variation of this system uses single duct units with a main bypass damper in the supply duct. The bypass damper is regulated by the static pressure in the supply duct. A nearly constant pressure can be maintained allowing the package units to operate at constant volume and the individual zones to be pressure dependent VAV.

Acoustical Constraints

Broadcast studios, theatres, and libraries require very low noise levels. Equipment selection and location is important here. If fan powered terminal units are to be used, careful examination of the equipment sound performance is imperative. RFI and EMI should also be considered when designing television studios.

Environmental Factors

Environmental factors include the climate and air conditions inside as well as outside the building. They also include legislative requirements such as outdoor air ventilation rates and local building codes. If high ventilation rates are required in interior zones, reheat will be required. In laboratories where high ventilation rates exist when multiple fume cupboards are open, reheat is required. In zones where the load changes significantly during the day such as exterior zones in high rise office buildings that are affected by the season, solar loads and occupancy, fan powered terminal units are ideal. Single duct terminal units are usually employed where the load is usually stable.

Contamination Considerations

Hospitals, clean rooms and laboratories pose special problems. Operating rooms, AIDS, TB and bone marrow transplant patient areas and clean rooms require pressurised environments. In addition to the pressure requirements, reheat coils and exposed fibreglass are usually avoided to eliminate the possibility of microbial growth in hospitals. Hospital rooms and clean rooms frequently also require constant and high ventilation rates which tend to favour dual duct terminal units. Patient housing for highly contagious diseases, such as tuberculosis, require negative pressure within the rooms to avoid allowing the germs to escape. Laboratories handling hazardous materials also require negative pressure areas. Single duct and dual duct units are usually selected for this type of building, too. Nailor room pressurisation units employing Nailor EPIC technology, installed with a HEPA filter are ideal for this application.

Maintenance and Accessibility

Certain types of buildings such as clean rooms require high levels of reliability from terminal units due to the difficulty and cost associated with servicing or maintaining the equipment. In a clean room, for example, if the ceiling must be opened, the space may require disinfection before it can be used again. Associated costs would include lost production time as well as the cost for disinfecting the room. In cases like these, the equipment should be located outside of the clean room space or highly reliable, low maintenance equipment should be used.

Cost Factors

Costs must be considered before the final system selection is made. Installation, operation and maintenance all contribute to total cost. Sometimes one of these costs is more important than others. For example, if the owner/builder sells the building before construction begins, then his main concern will be construction costs, and operating costs will be unimportant. If the tenants pay their own utilities, operating costs are not a concern to the developer/builder. Electric heaters usually have a lower installed cost than hot water coils, but they usually have a higher operating cost as well. Local rates will have to be researched to arrive at the correct decision before making the final selection.

System Selection

The following table presents a summary of the different types of terminal units currently available and their suitability for particular commercial building applications.

	Facility Type												
	Office Space, Educational & Institutional Buildings		Hospitals, Clean Rooms & Laboratories*			Noise Sensitive Applications #			Other Facilities				
	Large Small Building Building										dential		
	erior Zone	erior Zone	erior Zone	erior Zone	ient Areas	erating Areas	ooratory Space	adcast Studios	eatres	raries	blic Use	opping Centres	tels, Multi-Resi
Terminal Type	Int	Ext	Int	Ext	Pat	do	Lat	Bro	The	Lib	Pu	She	ЮН
Single Duct VAV Without Reheat VAV With Reheat	S S	N N	S S	S S	S S	P N	S P	S S	S S	S S	N P	S S	S S
Fan Powered Series Without Heat Series With Heat Low Temperature	P S S	N P P	S S N	S P N	N N N	ZZZ	ZZZ	P P S	P P S	P P S	P P P	P P N	P P N

= Preferred for this application. Ρ

* = Sealed lining is recommended for ease of cleaning.

= Sometimes used for this application. S N

= Not recommended for this application.

= Special consideration should be given to selecting very quiet operating equipment and use of secondary attenuators.

Terminal Unit Selection

All of the terminal units described below share several common components; corrosion resistant galvanised mild steel casing, sound absorbing internal insulation with an erosion resistant facing and a throttling damper to control conditioned air. Associated controls may be pneumatic, analogue electronic or digital.

Single Duct

Description

Basic unit consists of a damper, actuator, flow sensor and selected controls. Secondary discharge attenuators and multiple outlet plenums are also frequently used.

Operation

The terminal resets the volume of conditioned cold air delivery to the space in response to the room temperature sensor. The terminal can handle hot or cold air. Occasionally, the terminal is used to control both hot and cold air, where a dual function thermostat and inlet temperature sensing with change-over controls are utilised.

SUPP DISCHARGE

Figure 1. Single Duct (cross section)

Single Duct with Re-heat

Common Applications

Interior zones of a building which have a permanent cooling load and therefore no heating requirement, as well as hospitals, labs and clean rooms.

Description

Basic unit consists of a damper, actuator, flow sensor and selected controls as above with the addition of a heating coil (hot water or electric). Secondary discharge attenuators and multiple outlet plenums are also frequently used.

Figure 2. Single Duct with Re-heat (cross section)

Operation

The terminal resets the volume of conditioned cold air delivery to the space in response to the room temperature sensor. Upon a call for heat in the space the heating coil is energised and reheats the conditioned air. Electric coils are activated in stages upon temperature sensor demand and water coils are controlled using a proportional or two position on/off hot water valve.

Common Applications

- Exterior zones (adjacent to outside walls or the upper floor in the case of multi-story buildings) where convective and radiated heat losses create an intermittent need for moderate heating as the terminal usually reheats at the minimum setting. An auxiliary higher minimum setting is available as an option with additional controls.
- 2. Interior zones where ventilation requirements preclude full shut-off of the terminal or minimum airflow requires some added heat.

Terminal Unit Selection

Fan Powered Series Flow (Constant Volume)

Description

Basic unit consists of a primary air damper, actuator, flow sensor, fan/motor (with flow adjustment), and selected controls. Accessory heating coils either hot water or electric are also generally required.

Operation

The primary air damper throttles conditioned cold air in response to the room temperature sensor and delivers this air stream to the mixing chamber upstream of the fan/motor located in series with the primary airflow. The fan/motor then delivers a constant volume of air to the space. Upon demand for maximum cooling, the airflow is derived entirely from the conditioned air supply. As the cooling demand diminishes, the primary damper reduces the conditioned air

Figure 3. Fan Powered, Series (Constant Volume) (Plan View)

supply and the fan/motor compensates for this reduction by inducing make-up quantities of plenum air from the ceiling plenum thereby reclaiming otherwise wasted heat and mixing it with the conditioned air to maintain a constant volume variable temperature delivery of air to the space. Upon further reductions in space temperature, the supplemental heating coil is energised. The result is a constant volume of air diffusion to the space while the central system encounters a variable volume distribution system.

Common Applications

- 1. Exterior zones where heating and cooling loads may vary considerably and occupancy variances allow the central system to be shutdown or set-back during unoccupied hours.
- 2. Situations where central system economy is desired as central fans can be reduced in size because they only need to provide sufficient static to deliver air to the terminal.
- 3. Where occupant comfort is very important since the constant volume variable air temperature delivery produces optimal air distribution and optimum ventilation.

Figure 4 Fan Powered, STEALTH Series (Constant Volume) (Plan View)

Fan Powered Series Flow (Constant Volume) Super Quiet Operation

Super Quiet Series Flow (Constant Volume) Description

A terminal similar to above, but incorporating special design and construction features that provide unusually quiet operation.

Operation

As described above.

Common Applications

As described above, but premium performance and high quality construction are ideally suited to high profile design projects and applications requiring minimum noise, especially suitable for large zones and buildings allowing a lower first cost.

Fan Powered Series Flow, Low Temperature Air Distribution

Description

Same as Fan Powered Series (Constant Volume) with special lining and insulated inlet spigot.

operation

Same as Fan Powered Series (Constant Volume) description above.

The maximum cold air limit is established lower than the fan delivery in order to maintain the minimal mixing required to raise and temper the unit discharge temperature to a level acceptable for introduction to the occupied space, usually 13°C, with standard air outlets and maintaining ceiling coanda.

Common Applications

This unit is used with ice storage systems that are designed to provide low temperature (4 – 7° C) central system air distribution to the zone terminals

Figure 5 Fan Powered, Low Temperature (Plan View)

Introduction to VAV Terminal Controls

The control of air temperature in a space requires that the variable heating and/or cooling loads in the space are offset by some means. Space loads vary within a building and are influenced by many factors. These may include climate, season, time of day and zone position within the building, i.e. interior or exterior zone and geographic orientation. Other variable loads include people, mechanical equipment, lighting, computers, etc. In an air conditioning system compensating for the loads is achieved by introducing air into the space at a given temperature and quantity. Since space loads are always fluctuating the compensation to offset the loads must also change in a corresponding manner. Varying the air temperature or varying the air volume or a combination of both in a controlled manner in response to changing load conditions will offset the space load as required.

The variable air volume terminal unit or VAV box allows us to vary the air volume into a room and depending on type selected, also lets us vary the air temperature into a room.

The VAV terminal unit may be pressure dependent or pressure independent. This is a function of the control package.

VAV terminals are the most energy efficient means of providing control as the central system supply may be sized based on the simultaneous peak demand of the total zones. The diversity factor allows a reduction in capacity as the central unit does not have to be sized for the sum of the peak demands of the entire building.

Figure 7a Pressure Independent terminal damper characteristics.

Pressure independence assures the proper distribution of air to the conditioned space as required and allows the engineer to know that the design limits specified will be maintained. Maximum and minimum airflow limits are important for maintaining proper air distribution.

- Maximum airflow limits prevent over-cooling and excess noise in the occupied space.
- Minimum airflow limits assure that proper ventilation is maintained.

Figure 6. Typical Pressure Independent terminal unit controls and installation.

Pressure Independent

A device is said to be pressure independent when the flow rate passing through it is maintained constant regardless of variations in system inlet pressure.

The pressure independent control is achieved with the addition of a flow sensor and flow controller to the VAV box. The controller maintains a preset volume by measuring the flow through the inlet and modulating the damper in response to the flow signal. The preset volume can be varied between calibrated minimum or the maximum limits by the thermostat output.

The logarithmic graph shown in figure 11a illustrates pressure independent terminals' typical airflow settings and characteristics. The vertical lines 1a - 1b and 3a - 3b represent the calibrated minimum and maximum airflow settings respectively, that are adjusted at the flow controller. Line 2a - 2b represents any intermediate airflow setting maintained by the flow controller in response to thermostat demand. The damper will modulate (open and close) as required to hold the airflow setting constant up and down this vertical line regardless of upstream static pressure variations. Airflow will only change when the thermostat signal (demand) changes. The vertical lines are cut off by the diagonal line 1a - 3a, which represents the minimum operating static pressure drop across the terminal with the damper in the fully open position.

Figure 7b. Pressure Independent terminal controls.

Control Types

The various VAV controls available may include some or all of the following common components:

a) Flow Sensor

This device monitors the primary air inlet, measures air velocity and provides a feedback signal to the controller which directs the operation of the damper actuator. This control loop is the essence of the pressure independent operation.

b) Room Thermostat or Temperature Sensor

A room thermostat senses the room temperature, allows setpoint adjustment and also signals the controller to direct the damper actuator accordingly. Digital controls utilize a temperature sensor. Setpoint changes are managed by the digital controller.

c) Flow Controller

This device is 'the brain' and receives the signals from the Flow Sensor and the Room Thermostat or Temperature Sensor and processes the data to regulate the damper actuator.

d) Damper Actuator

This device receives the commands from the controller and opens or closes the damper to change or maintain the required airflow setting.

Analogue Electronic Systems (Pressure Independent)

Analogue electronic controls operate at 24 Vac powered by a transformer usually mounted within the control box of the terminal.

The electronic controls feature a velocity sensor (either the hot wire thermistor or pneumatic multi-point type with an electronic transducer) and an electronic velocity controller. They provide a proportional and integral (PI) control function.

The electronic thermostat is selected from one of four types; cooling, heating, cooling with reheat or cooling-heating. A three-stage reheat (two stages for fan powered terminals) or automatic heat/cool changeover relay can be furnished in the control box.

Analogue electronic controls are pressure independent and compensate for changes in duct

Figure 8. Analogue Electronic Control Schematic.

pressure.

Figure 9. Digital Control Schematic.

Direct Digital Control (DDC) Systems (Pressure Independent)

These micro-processor based electronic controls also operate at 24 Vac powered by a transformer usually mounted within the control box of the terminal.

The flow signal from a pneumatic or electronic velocity sensor and signals from the room temperature sensor are converted to digital impulses in the specialized micro-computer controller. The program usually includes a proportional, integral and derivative (PID) control algorithm for highly accurate operation.

The controller not only performs the reset and volume control functions, but also can be programmed and adjusted either locally or remotely. It can link to other controllers and interface with fans, lighting and other equipment. Control can be centralized in one computer.

DDC Controls are pressure independent and compensate for changes in duct pressure.

Digital Control Overview

A direct digital controller uses a digital computer to implement control algorithms on one or multiple control loops. Interface hardware allows the digital computer to process signals from various input devices. The control software calculates the required state of the output devices, such as damper actuators and fan starters. The output devices are then positioned to the calculated state via interface hardware.

The basic principles of temperature control for heating, ventilation and air conditioning systems are well established. These control strategies have been implemented using pneumatic, electric, and analog electronic control devices. In this computer age, the microprocessor technology is now available in applications specifically designed for HVAC control. Microprocessor based controllers bring cost effective, state of the art computing power to the control of VAV terminal units, air handling units, packaged heating and cooling units, and entire building HVAC systems.

Microprocessor based controllers use direct digital control to replace conventional pneumatic or analogue electronic controls. A direct digital controller takes input signals from sensors to generate numbers, processes this information digitally as directed by the programmed sequence of operation, and generates control action through binary on/off outputs or analogue output voltages.

Features of Series Flow Fan Powered Terminal Units

General

Fan powered variable air volume terminal units are one of the most economical ways to heat and cool many types of buildings today. Typically used for exterior zones, they have advantages for interior zones as well.

Applications

Series units, sometimes called Constant Volume Units because the fan runs constantly, are typically installed in the ceiling plenum. Induction air is either from the ceiling plenum or occasionally ducted from the conditioned space.

Configuration

The fan and VAV damper are aligned so that all the conditioned air that enters the mixing section as well as all the induced air that enters the mixing section must go through the fan to exit the unit and enter the occupied space. The mixing section is between the VAV damper and the fan. See figure 10.

Figure 10. Series Flow Terminal Configuration

Fan Design

Typically the fan runs continuously supplying a constant volume to the space. (Some DDC manufacturers offer special controller features incorporating fan speed control which is accomplished by the building management system. This allows dynamic fan speed control which can be modulating or multiple speed operation from a single speed motor.) Usually you would use Nailor EPIC fan volume control in this case The fan must be sized to match the maximum airflow to be supplied to the zone. Fan energy consumption is constant during occupied periods

VAV Cooling and Inlet Static Pressure Requirements

All the savings of VAV operation at the air handler and at the chiller are retained by using the series unit. Additional savings compared to single or dual duct VAV are realized due to the low inlet static pressure requirement of the Nailor 355. Since the air handler is only required to push the conditioned air through the ducts to the unit and across the VAV damper into the mixing section, the pressure at the air handler can be greatly reduced. Nailor 355 units require only 12 Pa static pressure at the inlet to operate properly. Using the 355 allows the duct designer to reduce the minimum static pressure in the upstream ductwork to (typically) 25 - 50 Pa or whatever is required to allow 12 Pa at the terminal while allowing a further reduction in horsepower and static pressure requirement from the air handler.

Control Sequence

The fan runs constantly during occupied periods.

During full cooling, the controls open the VAV damper to its maximum setpoint, delivering primary air to the mixing chamber. If the fan is set at the same airflow as the primary air VAV damper, then no air is induced from the plenum. If the fan is set at a higher airflow than the VAV damper, as it would be in a low temperature application, then air is induced from the plenum to meet the setpoint of the fan. The primary air and the induced air are blended before they enter the fan. Constant volume, constant temperature air is then discharged into the downstream duct and into the conditioned space.

As cooling demand decreases, the VAV damper modulates to lower setpoints until it reaches its minimum setpoint. Reducing the primary air into the plenum increases the volume of warmer induced air into the mixing chamber. The unit delivers mixed, constant volume, variable temperature air to the zone. The increased plenum air causes the discharge temperature to rise to nearly meet the plenum temperature taking advantage of the recaptured heat from lights, people and machinery.

Upon a further decrease in zone temperature, the controls will automatically energize the supplemental heat (optional equipment), either electric or hot water coils. The discharge temperature will increase as heat is applied.

As the temperature increases in the zone, the sequence will reverse.

Fan Interlocks

Sometimes series units are designed to run continuously. Usually, they are energized only during occupied periods or when needed for emergency heating during unoccupied periods. It is important to interlock the unit fan with the air handlers in the building to insure that they start during occupied periods. Series unit fans should be started ahead of the air handler to prevent back flow into the plenum and backwards rotation of the fan. Nailor 35S series units have a built-in, anti-backward rotation device; however, if the fan is allowed to rotate backwards at unusually high rpms before the motor is energized, the device can be overwhelmed by the backward momentum causing the motor to run backwards. Interlocking the unit fan with the air handler eliminates this problem. Interlocks can be airflow switches or relays to match the building management system. ECM motors can not run backwards.

Acoustics

Series fans are sized to match the maximum airflow required in the zone. The fan runs constantly during occupied periods. There are two sound sources in the unit, the fan and the VAV damper. While both contribute to the overall discharge and radiated sound emitted from the unit, the fan is primarily responsible for discharge noise while both the damper and the fan are responsible for radiated noise. Usually the radiated noise into the room is the larger and therefore more critical of the two components.

Comparing the sound level between a series and a parallel unit in similar zones, the series unit might generate slightly more noise. The fan and damper would be at their peak when the unit operates at full cooling capacity, the worst position in the sequence of operation for noise generation. As the primary air decreases, the noise generated would eventually be only from the fan.

Damper noise must be considered, however, as the noise decreases with decreasing inlet static pressure. It would be possible to select a very quiet series unit if very low inlet static pressure were utilized along with a very quiet fan since both components would decrease the radiated noise significantly.

Fan noise is constantly emitted into the zone. If the building is designed well and the terminal units are selected correctly, the fan will be the major noise component.

Energy Consumption

Fan powered VAV terminal units were originally designed and introduced to the HEVAC industry for their ability to save energy. That is what makes them so necessary and popular. They take advantage of typical VAV savings at the air handler and the chiller during the cooling periods, but the real savings are realised when heating is required. Fan powered terminals induce warm plenum air from the ceiling and blend it with the primary air at minimum ventilation requirements during the heating sequence. This recaptures all the heat created in the zone and plenum by lights, occupants, solar loading, and machinery or equipment such as computers, coffee machines, copiers, etc. Then the unit returns this heat as free heating rather than wasting it back at the air handler. If additional heating is required, then supplemental heat is added to the sequence, but the unit still saves energy by warming blended air at 24°C rather than reheating primary cooled air at 13°C, saving the cost of 11°C. at the heating airflow. Costs of operating the units pale in comparison to the cost of running other systems.

Fan Flow Control on Fan Powered Terminal Units

Introduction

When designing air systems and using fan powered VAV terminal units, it is as important to match the fan air to the space requirements as it is to match the primary air. To facilitate this process, Nailor Industries designed their units to work over a wide range of adjustability. The two commonly used methods are electronic fan speed control and mechanical trimming. The ultimate in fan control is Nailor EPIC fan control.

Nailor EPIC Fan Technology

Nailors 35SST, 37SST, 35S and 37S series units are all available with Nailor's EPIC fan technology. This option reduces the energy consumption at the fan by more than 50% at typical fan set points (even more at lower set points) while making the fan and motor assembly a completely predictable and programmable pressure independent assembly. Nailor's EPIC option allows the fan to be set at the factory before shipment to the job site or dynamically reset to room demand by the DDC controller and a pneumatic controller. EPIC fan technology starts with a smart motor (a DC electronically commutated motor) and a fan reset controller. Each motor is equipped with its own AC to DC converter and variable frequency drive. With the reset controller, the motor knows its rpm, the amount of torque it is producing and what airflow is required. It can calculate airflow from the known data and automatically adjust its torque and rpm to meet the required output regardless of external conditions, even if they are not constant and even if they are constantly changing.

Nailor was the first to introduce this technology to the industry in April 1997. It is still revolutionary as it allows fans to be preset at the factory or at the computer terminal, never requiring the commisioning contractor to go into the ceiling for fan adjustment. Additional features are sealed ball bearings that never require lubrication, slewed speed ramps and soft starts that never apply torque to the mounting hardware. Nailor's EPIC fan technology is industry leading state-of-the-art. It incorporates the highest effciency and most predictable and controllable motor options in any fractional horsepower application.

Fan Shift in Series Fan Powered Terminal Units

Before adjusting the fan, the possibility of fan shift must be considered. Some VAV terminal units suffer from a condition known as fan shift. This occurs when the fan is subjected to variations in pressure on the inlet side of the fan. As the primary damper changes from full cooling to minimum cooling, the pressure drop caused by the induction mixing chamber and associated inlet attenuators may cause the fan to shift its performance as it rides the fan curve. Consequences from the phenomenon vary from building to building and zone to zone, but if diffusers add background masking noise at design flow, then the noise levels will change as the volume changes. Design ventilation rates can also vary. Nailor series fan powered terminal units are designed to eliminate fan shift by using EPIC fan technology.

ENGINEERING GUIDE

Figure 11 Nailor ECM Fan Curves —

Notes

- The fan curves for the ECM motor are unlike those for traditional induction motors. The ECM motor is constant volume and airflow does not vary with changing static pressure conditions. The motor compensates for any changes in external static pressure or varying internal conditions such as filter loading.
- Airflow can be set to operate on a horizontal performance line at any point within the shaded area using the solid state volume controller provided.
- Fan powered terminal units featuring the ECM motor have considerably wider turn-down ratios than conventional induction motors. Hence, only three unit sizes are required in order to provide the same fan airflow range that would require six terminal unit/fan sizes when equipped with induction motors. A reduction in the number of different terminal sizes required on a typical project simplifies design lay-out and installation and reduces inventory of field service parts.
- Fan curves shown are applicable to 230 volt, single phase ECM motors. ECM motors, although DC in operation, include a built-in inverter.

Caution on Meters

Many digital multi-meters are not designed for true RMS readings. Using these meters when measuring amps or voltage on the motor in the fan powered terminal unit can result in erroneous readings. To measure the correct current and voltage, a true RMS DMM designed for this type of sine wave is required. These meters are not usually the least expensive meters

Nailor Benefits

- Motors have a larger turn down ratio.
 Nailor units do not suffer from fan shift.
- Nailor uses an electronic fan speed controller.

Sizing Fan Powered Terminals

The selection of fan powered terminal units involves four elements. How these elements are selected and their interactive effect determine the final overall performance of the units.

1. Primary Air Damper Selection

Identify the type of controller that is desired and select an inlet size that meets the minimum and maximum airflow desired from the recommended primary air volume range table provided in the Performance Data section of the catalogue. Selecting terminals near the top of their range may reduce cost, but will increase velocity and noise. For typical low pressure applications – selecting towards the bottom of the airflow range will reduce sound levels as larger inlets reduce face velocity and are quieter. Selecting the maximum airflow setting at between 70 – 85% of full capacity is a good trade-off to avoid possible low velocity control problems and sound problems at higher velocities.

2. Fan Size Selection

Fan selection is dictated by model, type and maximum primary airflow.

Series (constant) fan terminals usually require the fan to be sized to handle the maximum design air volume. The secondary fan air volume must be at least equal to the primary air to ensure the terminal does not become pressurized resulting in primary air spilling out into the ceiling plenum through the induction ports. The external static pressure requirements are the sum of the ductwork and diffusers downstream at design airflow plus an applicable hot water coil or electric heater, if required.

When fan airflow and downstream static pressure have been determined, select the fan size from the fan curves in the Performance Data section of the catalogue. Selecting towards the upper end of the range will keep down first cost and optimize fan operating efficiency. Upsizing the fan and operating it at a reduced speed can result in quieter operation. When electric or hot water coils are required, the Nailor EPIC fan volume control will continue to deliver the airflow designated by the fan curves without degradation.

3. Heater battery Selection

First determine the heating supply air temperature to the space by calculation using the heat transfer equation:

Where:

 $Q = \text{vol. } x \ 1.2 \ x \ 1.02 \ x \ \Delta t$ $\Delta =$ Supply air temperature (SAT) - Room design temperature (RT). Q = Design Heat Loss (kW.)

The supply air temperature (SAT) to the space equals the leaving air temperature (LAT) for the terminal unit.

Once the terminal LAT is determined, the heating requirements for the coil can be calculated. The leaving air temperature for the coil varies based on the type of model.

It is generally a good idea to maintain air temperatures of 29-35°C for air entering a room. This is LAT off the heating coil. Air this temperature can be effectively used to warm the room as it is not so buoyant that it cannot be driven to the floor, and it is warm enough to not produce chills from drafts.

Once both coil EAT (entering air temperature) and LAT are calculated, the heat transfer (Q) for the coil must be calculated, using the heat transfer equation. For electric heat, the capacity must be converted to kWh for selection. The required kW and number of steps desired should be checked with availability from the charts in the Performance Data section of the catalogue. For hot water coils, reference the capacity charts in the Performance Data to select the appropriate coil.

In fig 12, heating coils are located on the unit discharge so LAT for the coil equals the LAT for the terminal unit. Heating coil EAT equals the temperature of blended primary air and plenum air.

Where:

- T_1 = Plenum air temperature
- Q_1 = Plenum air quantity (l/s)
- Q_T = Total air moved by terminal fan (l/s)

Figure 12 Series Terminals with Hot Water or Electric Heat

4. Acoustics

Resulting sound levels are due to air valve generated noise and fan generated noise. The maximum noise generated by a given primary air damper size is determined by the difference between design inlet static pressure (the damper's most pressurized condition) and external static pressure at design cooling airflow. This represents the most extreme operating condition.

 T_2 = Primary air temperature

 Q_2 = Primary air quantity (l/s)

To determine fan noise levels, fan airflow (adjusted within its range by the Nailor EPIC fan volume controller) and external static pressure conditions are required.

With a series unit, primary air damper and fan are evaluated together for cooling, as they operate simultaneously and fan only for heating, in the occupied mode (in the unoccupied mode, a night setback fan cycling option is available).

From the performance data, determine the sound power levels for both discharge and radiated path under the appropriate operating conditions. If the terminal is properly located some distance from the supply air space, discharge air noise is generally a secondary concern. Radiated noise from the unit casing typically dictates the noise level in the installed location space.

Terminal Installation and Application Precautions Avoiding Common Problems

Sizing Terminals

Select terminals based upon recommended air volume ranges. The pressure independent terminal's main feature is its ability to accept factory calibrated minimum and maximum airflow limits that correspond to the designer's space load and ventilation requirements for a given zone.

A common misconception is that oversizing a terminal will make the unit operation quieter. In reality, the terminal damper will have to operate in a pinched-down condition most of the time which may actually increase noise levels to the space. Control accuracy may suffer as the terminal is only using a fraction of its total damper travel or stroke. In addition, the low inlet velocities may be insufficient to produce a readable signal for the sensor and reset controller. This means minimum settings may not hold with a resultant loss of control accuracy and undesirable hunting.

The recommended selection for maximizing performance is to size the terminal's maximum airflow limit for 70 – 85% of its rated capacity in accordance with the catalogue recom-mendations. For accurate control the minimum setting guideline is not lower than 20% of the unit's rated total capacity.

Another problem associated with oversizing terminals with electric heat is again insufficient velocity causing occasional tripping of the airflow safety switch.

Observe Space Restrictions

During the design phase try and ensure terminals are located for ease of installation, optimum performance and maintenance accessibility. Figure 15 shows all of the worst conditions: a convoluted inlet, controls and heating coil connections are restricted as the terminal is against a wall and the outlet restricted condition reduces performance.

Optimize Inlet Conditions

The type of duct and its approach may have a large and adverse impact on both pressure drop and control accuracy. Figure 16 shows several typical poor conditions that generate unwanted turbulence. Although multi-point sensors can compensate to a large degree, good design practice should always prevail. Nailor recommends wherever possible, a straight duct inlet connection with a minimum length of two duct diameters, the same size as the inlet.

Terminal inlet spigots are undersized to suit nominal ductwork dimensions. The inlet duct slips over the terminal inlet spigot and is fastened and sealed in accordance with project specifications. Never insert a duct inside the inlet spigot, control calibration will be adversely affected.

Figure 13 Severe Throttling: Oversized terminals will operate in a near closed position even at maximum airflow. Control accuracy may also suffer.

Figure 15 Restricted Installation, Poor Location.

Figure 16 Poor Inlet Conditions.

Terminal Installation and Application Precautions Avoiding Common Problems

Sometimes it is not possible due to space restrictions to provide an ideal inlet condition. In this case field adjustment of the airflow settings on the velocity controller may be required to compensate. The use of flow straightening devices (equalizing grids) are recommended after short radius elbows that are immediately ahead of the terminal and where terminals are unavoidably tapped directly off the main duct.

Figure 17 Ideal Inlet Conditions.

Observe Zoning Requirements

Correctly sizing terminals with regard to the physical conditions of the occupied space is vital to ensure acceptable performance. One large terminal serving a space with divided work areas may result in the single thermostat only providing acceptable temperature control where it is located. The other space(s) served may be too cold or too hot if it has differing space load requirements.

Figure 18 Poor Zone Application.

Optimize Discharge Conditions

Poor discharge duct connections may have an adverse affect on pressure drop. Try and avoid installing tees, transitions and elbows close to the inlet discharge. Avoid long runs of flex and keep short flex runs as straight as possible. Make curves as shallow as possible and ensure entrance condition to diffuser outlet is straight.

Figure 19 Poor Discharge Conditions.

Terminal Installation and Application Precautions Avoiding Common Problems

Avoid Excessive Air Temperature Rise

Terminals with electric or hot water reheat coils should be designed to satisfy load conditions but attention should be paid to the temperature differential (Δ t) between the entering room air and ambient temperature. We recommend a maximum Δ t of 8°C to avoid possible stratification due to the excessive buoyancy of the warm air and ensure good room mixing and temperature equalization. Absolute maximum air entry temperature is 49°C for comfort heating.

Correctly Supported Terminal

Although the basic single duct terminal is light enough that it can be supported by the ductwork in which it is installed, we recommend that the units be independently supported. When accessory modules such as heating coils, attenuators or multipleoutlet plenums are included, the assembly should also be supported directly.

Larger terminals such as fan powered terminal units should always be independently supported and secured to building structure.

Be careful not to block access panels with drop rods or hanger wires.

Figure 20 Avoid excessive temperature differentials

Figure 21 Recommended Terminal Suspension.

Figure 22 Possible Air Leakage Points.

Minimise Duct Leakage

To prevent excess air leakage and minimize energy waste, all joints should be sealed with an approved duct sealer. Most leakage can be avoided by practicing good fabrication and installation techniques, particularly upstream of the terminal which may be required to hold significantly higher pressures than downstream of the terminal.

Usefi	ul Formulae and De	efinitions	
Airflo	w		Power DC Circuits
Q Q	= V x A = Airflow Rate - m ³ /s		$HP = \frac{V \times A \times Eff}{746} \qquad Eff = \frac{746 \times HP}{kW}$
V A	 Velocity - m/s Area - m² 		kW = V x A
Pressu	ure		v = voils A = Amperes
Pv	$=\left(\begin{array}{c}V\\1.3\end{array}\right)^2$		Eff = Efficiency
Pv	= Velocity Pressure	N/m ²	Power AC Circuits Single Phase
V	= Velocity	m/s	
Рт	$= P_V + P_S$		PF = kW
Рт	= Total Pressure	N/m ²	VXA
Pv	= Velocity Pressure	N/m ²	
Ps	= Static Pressure	N/m ²	$A = \frac{746 \text{ x HP}}{100000000000000000000000000000000000$
Heat 1	Transfer		V X ETT X PF
-			Eff = 746 x HP
Q		1.1.4	V x A x PF
Q	= Quantity of Heat	KW	
M	= Mass	Kg	$KW = \frac{V X A X PF X EIT}{1000}$
ر ۳	= Specific Heat Capacity	KJ/Kg°C	$HD = V \times \Lambda \times PE \times Eff$
Δ		Ĵ	746
Water	Coils		
			Power AC Circuits Three Phase
Ľ۵	= <u>Q</u>		
	mxcxv		PF = kW
Ľ۵	= Air Temperature Rise	°C	$\overline{V \times A \times 1.732}$
Q	= Quantity of Heat	kW	
М	= Mass		A = 746 x HP
C	= Specific Heat Capacity	kJ/kg °C = 4.2 water	V x Eff x PF x 1.732
V	= Air Volume	m³/s	
_			$\frac{740 \times \text{Hr}}{\sqrt{2} \times 4 \times \text{PE} \times 1.732}$
Electr	ic Heater Batteries		
	0		kW = V x A x PF x Eff x 1.732
۲۵	$= \frac{Q}{m x c x v}$		
Ľ۵	= Air Temperature Rise	°C	$Hr = \underbrace{v \times A \times PF \times EII \times 1./32}_{7/6}$
0	= Quantity of Heat	kW	770
Ň	= Mass	kø	PF = Power Factor
C	= Specific Heat Canacity	⇒ kl/kø°C = 1 02 Air	kW = Kilowatts
v	= Air Volume	m ³ /s	V = VOIts
•		,.	A = Ainperes $HP = Horse Power$
			Fff = Ffficiencv